skip to main content


Title: TaADF4 , an actin‐depolymerizing factor from wheat, is required for resistance to the stripe rust pathogen Puccinia striiformis f. sp. tritici
Summary

Actin filament assembly in plants is a dynamic process, requiring the activity of more than 75 actin‐binding proteins. Central to the regulation of filament assembly and stability is the activity of a conserved family of actin‐depolymerizing factors (ADFs), whose primarily function is to regulate the severing and depolymerization of actin filaments. In recent years, the activity ofADFproteins has been linked to a variety of cellular processes, including those associated with response to stress. Herein, a wheatADFgene,TaADF4,was identified and characterized.TaADF4encodes a 139‐amino‐acid protein containing five F‐actin‐binding sites and two G‐actin‐binding sites, and interacts with wheat (Triticum aestivum) Actin1 (TaACT1),in planta. Following treatment of wheat, separately, with jasmonic acid, abscisic acid or with the avirulent race,CYR23, of the stripe rust pathogenPuccinia striiformisf. sp.tritici, we observed a rapid induction in accumulation ofTaADF4mRNA. Interestingly, accumulation ofTaADF4mRNAwas diminished in response to inoculation with a virulent race,CYR31. Silencing ofTaADF4resulted in enhanced susceptibility toCYR23, demonstrating a role forTaADF4in defense signaling. Using a pharmacological‐based approach, coupled with an analysis of host response to pathogen infection, we observed that treatment of plants with the actin‐modifying agent latrunculin B enhanced resistance toCYR23, including increased production of reactive oxygen species and enhancement of localized hypersensitive cell death. Taken together, these data support the hypothesis thatTaADF4 positively modulates plant immunity in wheat via the modulation of actin cytoskeletal organization.

 
more » « less
NSF-PAR ID:
10026983
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
89
Issue:
6
ISSN:
0960-7412
Page Range / eLocation ID:
p. 1210-1224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The actin‐related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, theSolanum habrochaitesARPC3gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized.ShARPC3encodes a 174‐amino acid protein possessing a conserved P21‐Arc domain. Silencing ofShARPC3resulted in enhanced susceptibility to the powdery mildew pathogenOidium neolycopersici(On‐Lz), demonstrating a role forShARPC3in defence signalling. Interestingly, a loss ofShARPC3coincided with enhanced susceptibility toOn‐Lz, a process that we hypothesize is the result of a block in the activity of SA‐mediated defence signalling. Conversely, overexpression ofShARPC3inArabidopsis thaliana, followed by inoculation withOn‐Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression ofShARPC3in thearc18mutant ofSaccharomyces cerevisiae(i.e.,∆arc18) resulted in complementation of stress‐induced phenotypes, including high‐temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response toOneolycopersicipathogenesis.

     
    more » « less
  2. Summary

    The GreenCut encompasses a suite of nucleus‐encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non‐photosynthetic/heterotrophic organisms. InChlamydomonas reinhardtii,CPLD49 (Conserved inPlantLineage andDiatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that acpld49mutant has impaired photoautotrophic growth under high‐light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochromeb6fcomplex (Cytb6f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore,CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein,CPLD38; a mutant null forCPLD38 also impacts Cytb6fcomplex accumulation. We investigated several potential functions ofCPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis thatCPLD38 andCPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6fcomplex. Based on motifs ofCPLD49 and the activities of otherCPLD49‐like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6f.

     
    more » « less
  3. Premise

    Light is critical in the ability of plants to accumulate chlorophyll. When exposed to far‐red (FR) light and then grown in white light in the absence of sucrose, wild‐type seedlings fail to green in a response known as theFRblock of greening (BOG). This response is controlled by phytochrome A through repression of protochlorophyllide reductase‐encoding (POR) genes byFRlight coupled with irreversible plastid damage. Sigma (SIG) factors are nuclear‐encoded proteins that contribute to plant greening and plastid development through regulating gene transcription in chloroplasts and impacting retrograde signaling from the plastid to nucleus.SIGs are regulated by phytochromes, and the expression of someSIGfactors is reduced in phytochrome mutant lines, including phyA. Given the association of phyA with theFR BOGand its regulation ofSIGfactors, we investigated the potential regulatory role ofSIGfactors in theFR BOGresponse.

    Methods

    We examinedFR BOGresponses insigmutants, phytochrome‐deficient lines, and mutant lines for several phy‐associated factors. We quantified chlorophyll levels and examined expression of keyBOG‐associated genes.

    Results

    Among sixsigmutants, only thesig6 mutant significantly accumulated chlorophyll afterFR BOGtreatment, similar to thephyAmutant.SIG6 appears to control protochlorophyllide accumulation by contributing to the regulation of tetrapyrrole biosynthesis associated with glutamyl‐tRNAreductase (HEMA1) function, select phytochrome‐interacting factor genes (PIF4andPIF6), andPENTA1, which regulatesPORAmRNAtranslation afterFRexposure.

    Conclusions

    Regulation ofSIG6plays a significant role in plant responses toFRexposure during theBOGresponse.

     
    more » « less
  4. Summary

    In plants, 24 nucleotide long heterochromatic siRNAs (het‐siRNAs) transcriptionally regulate gene expression byRNA‐directedDNAmethylation (RdDM). The biogenesis of most het‐siRNAs depends on the plant‐specificRNApolymeraseIV(PolIV), andARGONAUTE4 (AGO4) is a major het‐siRNAeffector protein. Through genome‐wide analysis ofsRNA‐seq data sets, we found thatAGO4is required for the accumulation of a small subset of het‐siRNAs. The accumulation ofAGO4‐dependent het‐siRNAs also requires several factors known to participate in the effector portion of the RdDMpathway, includingRNA POLYMERASEV (POLV),DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) andSAWADEE HOMEODOMAIN HOMOLOGUE1 (SHH1). Like manyAGOproteins,AGO4 is an endonuclease that can ‘slice’RNAs. We found that a slicing‐defectiveAGO4 was unable to fully recoverAGO4‐dependent het‐siRNAaccumulation fromago4mutant plants. Collectively, our data suggest thatAGO4‐dependent siRNAs are secondary siRNAs dependent on the prior activity of the RdDMpathway at certain loci.

     
    more » « less
  5. Summary

    Despite well established roles of microRNAs in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA167A (miR167OE) in camelina (Camelina sativa) under a seed‐specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OEseeds had a lower α‐linolenic acid with a concomitantly higher linoleic acid content than the wild‐type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (CsFAD3) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsARF8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF8 bound to promoters of camelinabZIP67andABI3genes. These transcription factors directly or through theABI3‐bZIP12 pathway regulateCsFAD3expression and affect α‐linolenic acid accumulation. In addition, to decipher the miR167A‐CsARF8 mediated transcriptional cascade forCsFAD3suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167OE, including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down‐regulated. This study provides valuable insights into the regulatory mechanism of fatty acid metabolism and seed size determination, and suggests possible approaches to improve these important traits in camelina.

     
    more » « less