skip to main content


Title: TaADF4 , an actin‐depolymerizing factor from wheat, is required for resistance to the stripe rust pathogen Puccinia striiformis f. sp. tritici
Summary

Actin filament assembly in plants is a dynamic process, requiring the activity of more than 75 actin‐binding proteins. Central to the regulation of filament assembly and stability is the activity of a conserved family of actin‐depolymerizing factors (ADFs), whose primarily function is to regulate the severing and depolymerization of actin filaments. In recent years, the activity ofADFproteins has been linked to a variety of cellular processes, including those associated with response to stress. Herein, a wheatADFgene,TaADF4,was identified and characterized.TaADF4encodes a 139‐amino‐acid protein containing five F‐actin‐binding sites and two G‐actin‐binding sites, and interacts with wheat (Triticum aestivum) Actin1 (TaACT1),in planta. Following treatment of wheat, separately, with jasmonic acid, abscisic acid or with the avirulent race,CYR23, of the stripe rust pathogenPuccinia striiformisf. sp.tritici, we observed a rapid induction in accumulation ofTaADF4mRNA. Interestingly, accumulation ofTaADF4mRNAwas diminished in response to inoculation with a virulent race,CYR31. Silencing ofTaADF4resulted in enhanced susceptibility toCYR23, demonstrating a role forTaADF4in defense signaling. Using a pharmacological‐based approach, coupled with an analysis of host response to pathogen infection, we observed that treatment of plants with the actin‐modifying agent latrunculin B enhanced resistance toCYR23, including increased production of reactive oxygen species and enhancement of localized hypersensitive cell death. Taken together, these data support the hypothesis thatTaADF4 positively modulates plant immunity in wheat via the modulation of actin cytoskeletal organization.

 
more » « less
PAR ID:
10026983
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
89
Issue:
6
ISSN:
0960-7412
Page Range / eLocation ID:
p. 1210-1224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The actin‐related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, theSolanum habrochaitesARPC3gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized.ShARPC3encodes a 174‐amino acid protein possessing a conserved P21‐Arc domain. Silencing ofShARPC3resulted in enhanced susceptibility to the powdery mildew pathogenOidium neolycopersici(On‐Lz), demonstrating a role forShARPC3in defence signalling. Interestingly, a loss ofShARPC3coincided with enhanced susceptibility toOn‐Lz, a process that we hypothesize is the result of a block in the activity of SA‐mediated defence signalling. Conversely, overexpression ofShARPC3inArabidopsis thaliana, followed by inoculation withOn‐Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression ofShARPC3in thearc18mutant ofSaccharomyces cerevisiae(i.e.,∆arc18) resulted in complementation of stress‐induced phenotypes, including high‐temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response toOneolycopersicipathogenesis.

     
    more » « less
  2. Summary

    Modulation of the active versus inactive forms of the Gα protein is critical for the signaling processes mediated by the heterotrimeric G‐protein complex. We have recently established that in Arabidopsis, the regulator of G‐protein signaling (RGS1) protein and a lipid‐hydrolyzing enzyme, phospholipase Dα1 (PLDα1), both act asGTPase‐activity accelerating proteins (GAPs) for the Gα protein to attenuate its activity.RGS1 andPLDα1 interact with each other, andRGS1 inhibits the activity ofPLDα1 during regulation of a subset of responses. In this study, we present evidence that this regulation is bidirectional. Phosphatidic acid (PA), a second messenger typically derived from the lipid‐hydrolyzing activity ofPLDα1, is a molecular target ofRGS1.PAbinds and inhibits theGAPactivity ofRGS1. A conserved lysine residue inRGS1 (Lys259) is directly involved inRGS1–PAbinding. Introduction of thisRGS1 protein variant in thergs1mutant background makes plants hypersensitive to a subset of abscisic acid‐mediated responses. Our data point to the existence of negative feedback loops between these two regulatory proteins that precisely modulate the level of active Gα, consequently generating a highly controlled signal–response output.

     
    more » « less
  3. Abstract

    ARGONAUTES are the central effector proteins ofRNAsilencing which bind target transcripts in a smallRNA‐guided manner.Arabidopsis thalianahas 10ARGONAUTE(AGO) genes, with specialized roles inRNA‐directedDNAmethylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization amongAGOgenes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO1,AGO10, andAGO7using yeast 1‐hybrid assays. A ranked list of candidateDNA‐bindingTFs revealed binding of theAGO7promoter by a number of proteins in two families: the miR156‐regulatedSPLfamily and the miR319‐regulatedTCPfamily, both of which have roles in developmental timing and leaf morphology. Possible functions forSPLandTCPbinding are unclear: we showed that these binding sites are not required for the polar expression pattern ofAGO7, nor for the function ofAGO7in leaf shape. NormalAGO7transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO7‐triggeredTAS3pathway functions in timing and polarity.

     
    more » « less
  4. Summary

    In plants, 24 nucleotide long heterochromatic siRNAs (het‐siRNAs) transcriptionally regulate gene expression byRNA‐directedDNAmethylation (RdDM). The biogenesis of most het‐siRNAs depends on the plant‐specificRNApolymeraseIV(PolIV), andARGONAUTE4 (AGO4) is a major het‐siRNAeffector protein. Through genome‐wide analysis ofsRNA‐seq data sets, we found thatAGO4is required for the accumulation of a small subset of het‐siRNAs. The accumulation ofAGO4‐dependent het‐siRNAs also requires several factors known to participate in the effector portion of the RdDMpathway, includingRNA POLYMERASEV (POLV),DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) andSAWADEE HOMEODOMAIN HOMOLOGUE1 (SHH1). Like manyAGOproteins,AGO4 is an endonuclease that can ‘slice’RNAs. We found that a slicing‐defectiveAGO4 was unable to fully recoverAGO4‐dependent het‐siRNAaccumulation fromago4mutant plants. Collectively, our data suggest thatAGO4‐dependent siRNAs are secondary siRNAs dependent on the prior activity of the RdDMpathway at certain loci.

     
    more » « less
  5. A newly discovered bacterial species,Pseudomonas floridensis, has emerged as a pathogen of tomato in Florida. This study compares the virulence and other attributes ofP. floridensistoPseudomonas syringaepv.tomato, which causes bacterial speck disease of tomato.Pseudomonas floridensisreached lower population levels in leaves of tomato as compared to theP. syringaepv.tomatostrainsDC3000 andNYT1. Analysis of the genome sequence of theP. floridensistype strainGEV388 revealed that it has just nine typeIIIeffectors including AvrPtoBGEV388, which is 66% identical to AvrPtoB inDC3000. Five of these effectors have been previously reported to be members of a ‘minimal effector repertoire’ required for fullDC3000 virulence onNicotiana benthamiana; however,GEV388 grew poorly on leaves of this plant species compared to theDC3000 minimal effector strain. The tomatoPtogene recognizes AvrPtoB in race 0P. syringaepv.tomatostrains, thereby conferring resistance to bacterial speck disease.Ptowas also found to confer resistance toP. floridensis, indicating this gene will be useful in the protection of tomato against this newly emerged pathogen.

     
    more » « less