Emerging evidence indicates a close connection between cell‐cycle progression and the plant immune responses. In Arabidopsis,
Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in
- PAR ID:
- 10027011
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 89
- Issue:
- 6
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 1093-1105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary (MODIFIER OF snc1‐1 ) modulates a number of processes including endoreduplication and plant disease resistance, but the molecular mechanism underlying this modulation was not fully understood. Here, we provide biochemical and genetic evidence thatMOS 1TEOSINTE BRANCHED 1,CYCLOIDEA ,PCF 1 (TCP ) transcription factorsTCP 15 and its homologues are mediators ofMOS 1 function in the immune response and are likely to be also involved in cell‐cycle control.MOS 1 andTCP proteins have a direct physical interaction. They both bind to the promoter of the immune receptor gene ,SUPRESSOR OF npr1‐1 (CONSTITUTIVE 1 ) and modulate its expression and consequently immune responses.SNC 1MOS 1 andTCP 15 both affect the expression of cell‐cycle genesD‐type ;CYCLIN 31 ( ;CYCD 31 ), which may mediate theMOS 1 function in cell‐cycle modulation. In addition, ;CYCD 31 overexpression upregulates immune responses, andSNC1 expression. This study investigated and revealed a role forMOS 1 in transcriptional regulation throughTCP 15 and its homologues. This finding suggests the coordination of cell‐cycle progression and plant immune responses at multiple levels. -
Abstract Background Plants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT gene family contains known regulators of GSA, including the gene clades
LAZY ,DEEPER ROOTING (DRO) , andTILLER ANGLE CONTROL (TAC) .Results Here, we investigated the influence of light on different aspects of GSA phenotypes in
LAZY andDRO mutants, as well as the influence of known light signaling pathways on IGT gene expression. Phenotypic analysis revealed thatLAZY andDRO genes are collectively required for changes in the angle of shoot branch tip and root growth in response to light. Singlelazy1 mutant branch tips turn upward in the absence of light and in low light, similar to wild-type, and mimic triple and quadruple IGT mutants in constant light and high-light conditions, while triple and quadruple IGT/LAZY mutants show little to no response to changing light regimes. Further, the expression of IGT/LAZY genes is differentially influenced by daylength, circadian clock, and light signaling.Conclusions Collectively, the data show that differential expression of
LAZY andDRO genes are required to enable plants to alter organ angles in response to light-mediated signals. -
Abstract Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between three
M echanosensitive channel ofS mall conductance‐L ike (MSL ) proteins fromArabidopsis thaliana .MSL proteins areArabidopsis homologs of the bacterialM echanos ensitivec hannel ofS mall conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock.MSL 1 localizes to the inner mitochondrial membrane, whileMSL 2 andMSL 3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion in , both in wild type and inMSL 1msl2 msl3 mutant backgrounds.msl1 single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling inmsl2 msl3 double mutants was exacerbated in themsl1 msl2 msl3 triple mutant. However, the introduction of themsl1 lesion into themsl2 msl3 mutant background suppressed othermsl2 msl3 mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version of . In yeast‐based interaction studies,MSL 1MSL 1 interacted with itself, but not withMSL 2 orMSL 3. These results establish that the abnormalities observed inmsl2 msl3 double mutants is partially dependent on the presence of functionalMSL 1 and suggest a possible role for communication between plastid and mitochondria in seedling development. -
Abstract ARGONAUTES are the central effector proteins of
RNA silencing which bind target transcripts in a smallRNA ‐guided manner.Arabidopsis thaliana has 10 (ARGONAUTE ) genes, with specialized roles inAGO RNA ‐directedDNA methylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization among genes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO ,AGO 1 , andAGO 10 using yeast 1‐hybrid assays. A ranked list of candidateAGO 7DNA ‐bindingTF s revealed binding of the promoter by a number of proteins in two families: the miR156‐regulatedAGO 7SPL family and the miR319‐regulatedTCP family, both of which have roles in developmental timing and leaf morphology. Possible functions forSPL andTCP binding are unclear: we showed that these binding sites are not required for the polar expression pattern of , nor for the function ofAGO 7 in leaf shape. NormalAGO 7 transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO 7AGO 7‐triggered pathway functions in timing and polarity.TAS 3 -
Summary Light signal provides the spatial and temporal information for plants to adapt to the prevailing environmental conditions. Alterations in light quality and quantity can trigger robust changes in global gene expression. In
Arabidopsis thaliana , two groups of key factors regulating those changes in gene expression areCONSTITUTIVE PHOTOMORPHOGENESIS /DEETIOLATED /FUSCA (COP /DET /FUS ) and a subset of basic helix‐loop‐helix transcription factors calledPHYTOCHROME ‐INTERACTING FACTORS (PIF s). Recently, rapid progress has been made in characterizing the E3 ubiquitin ligases for the light‐induced degradation ofPIF 1,PIF 3 andPIF 4; however, the E3 ligase(s) forPIF 5 remains unknown. Here, we show that theCUL 4COP 1–SPA complex is necessary for the red light‐induced degradation ofPIF 5. Furthermore,COP 1 andSPA proteins stabilizePIF 5 in the dark, but promote the ubiquitination and degradation ofPIF 5 in response to red light through the 26S proteasome pathway. Genetic analysis illustrates that overexpression of can partially suppress bothPIF 5cop1‐4 andspaQ seedling de‐etiolation phenotypes under dark and red‐light conditions. In addition, thePIF 5 protein level cycles under both diurnal and constant light conditions, which is also defective in thecop1‐4 andspaQ backgrounds. Bothcop1‐4 andspaQ show defects in diurnal growth pattern. Overexpression of partially restores growth defects inPIF 5cop1‐4 andspaQ under diurnal conditions, suggesting that theCOP 1–SPA complex plays an essential role in photoperiodic hypocotyl growth, partly through regulating thePIF 5 level. Taken together, our data illustrate how theCUL 4COP 1–SPA E3 ligase dynamically controls thePIF 5 level to regulate plant development.