- PAR ID:
- 10027175
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Quarterly Journal of the Royal Meteorological Society
- Volume:
- 143
- Issue:
- 702
- ISSN:
- 0035-9009
- Page Range / eLocation ID:
- 288 to 292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Much of our understanding of atmospheric circulation comes from relationships between aspects of the circulation and the mean state of the atmosphere. In particular, the concept of mean available potential energy (MAPE) has been used previously to relate the strength of the extratropical storm tracks to the zonal-mean temperature and humidity distributions. Here, we calculate for the first time the MAPE of the zonally varying (i.e., three-dimensional) time-mean state of the atmosphere including the effects of latent heating. We further calculate a local MAPE by restricting the domain to an assumed eddy size, and we partition this local MAPE into convective and nonconvective components. Local convective MAPE maximizes in the subtropics and midlatitudes, in many cases in regions of the world that are known to have intense convection. Local nonconvective MAPE has a spatial pattern similar to the Eady growth rate, although local nonconvective MAPE has the advantage that it takes into account latent heating. Furthermore, the maximum potential ascent associated with local nonconvective MAPE is related to the frequency of warm conveyor belts (WCBs), which are ascending airstreams in extratropical cyclones with large impacts on weather. This maximum potential ascent can be calculated based only on mean temperature and humidity, and WCBs tend to start in regions of high maximum potential ascent on a given day. These advances in the use of MAPE are expected to be helpful to connect changes in the mean state of the atmosphere, such as under global warming, to changes in important aspects of extratropical circulation.more » « less
-
Abstract Jupiter’s atmosphere is one of the most turbulent places in the solar system. Whereas observations of lightning and thunderstorms point to moist convection as a small-scale energy source for Jupiter’s large-scale vortices and zonal jets, this has never been demonstrated due to the coarse resolution of pre-Juno measurements. The Juno spacecraft discovered that Jovian high latitudes host a cluster of large cyclones with diameter of around 5,000 km, each associated with intermediate- (roughly between 500 and 1,600 km) and smaller-scale vortices and filaments of around 100 km. Here, we analyse infrared images from Juno with a high resolution of 10 km. We unveil a dynamical regime associated with a significant energy source of convective origin that peaks at 100 km scales and in which energy gets subsequently transferred upscale to the large circumpolar and polar cyclones. Although this energy route has never been observed on another planet, it is surprisingly consistent with idealized studies of rapidly rotating Rayleigh–Bénard convection, lending theoretical support to our analyses. This energy route is expected to enhance the heat transfer from Jupiter’s hot interior to its troposphere and may also be relevant to the Earth’s atmosphere, helping us better understand the dynamics of our own planet.
-
Abstract Interactions between clouds, water vapor, radiation, and circulation influence tropical cyclone (TC) development. Many of these interactions can be quantified by understanding tendencies of the spatial variance of moist static energy (MSE). Dropsondes from aircraft reconnaissance sample profiles needed to compute MSE at fine vertical resolution, and may be useful in analyzing these feedbacks on TCs in situ. However, dropsondes are spatially sparse, and sample limited column depths depending on the type of reconnaissance mission. We use idealized convection‐permitting simulations to examine how MSE variability, and the feedbacks that influence it, are resolved using selected patterns of grid points meant to resemble dropsonde launch points in reconnaissance flight patterns. We first examine the column depth necessary to capture the MSE variability of the full atmosphere. We then study how these simulated flight patterns depict MSE variance and its relevant diabatic feedbacks in TCs of varying structure and intensity.
-
Abstract To define a conserved energy for an atmosphere with phase changes of water (such as vapor and liquid), motivation in the past has come from generalizations of dry energies—in particular, from gravitational potential energy ρgz. Here a new definition of moist energy is introduced, and it generalizes another form of dry potential energy, proportional to θ2, which is valuable since it is manifestly quadratic and positive definite. The moist potential energy here is piecewise quadratic and can be decomposed into three parts, proportional to bu2Hu, bs2Hs, and M2Hu, which represent, respectively, buoyant energies and a moist latent energy that is released upon a change of phase. The Heaviside functions Hu and Hs indicate the unsaturated and saturated phases, respectively. The M2 energy is also associated with an additional eigenmode that arises for a moist atmosphere but not a dry atmosphere. Both the Boussinesq and anelastic equations are examined, and similar energy decompositions are shown in both cases, although the anelastic energy is not quadratic. Extensions that include cloud microphysics are also discussed, such as the Kessler warm-rain scheme. As an application, empirical orthogonal function (EOF) analysis is considered, using a piecewise quadratic moist energy as a weighted energy in contrast to the standard L2 energy. By incorporating information about phase changes into the energy, the leading EOF modes become fundamentally different and capture the variability of the cloud layer rather than the dry subcloud layer.