skip to main content


Title: Paleoecology and Geoarchaeology at El Palmar and the El Zotz Region, Guatemala: PALEOECOLOGY AND GEOARCHAEOLOGY, GUATAMALA
NSF-PAR ID:
10027265
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geoarchaeology
Volume:
32
Issue:
1
ISSN:
0883-6353
Page Range / eLocation ID:
90 to 106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The burgeoning field of phylogenetic paleoecology (Lamsdell et al. 2017) represents a synthesis of the related but differently focused fields of macroecology (Brown 1995) and macroevolution (Stanley 1975). Through a combination of the data and methods of both disciplines, phylogenetic paleoecology leverages phylogenetic theory and quantitative paleoecology to explain the temporal and spatial variation in species diversity, distribution, and disparity. Phylogenetic paleoecology is ideally situated to elucidate many fundamental issues in evolutionary biology, including the generation of new phenotypes and occupation of previously unexploited environments; the nature of relationships among character change, ecology, and evolutionary rates; determinants of the geographic distribution of species and clades; and the underlying phylogenetic signal of ecological selectivity in extinctions and radiations. This is because phylogenetic paleoecology explicitly recognizes and incorporates the quasi-independent nature of evolutionary and ecological data as expressed in the dual biological hierarchies (Eldredge and Salthe 1984; Congreve et al. 2018; Fig. 1), incorporating both as covarying factors rather than focusing on one and treating the other as error within the dataset. 
    more » « less
  2. Over a century of paleoecological investigations have been dedicated to studying the preserved hard parts of organisms contained in geological archives. Although the fossil record has revealed valuable insights into past ecosystems, the vast majority of past life has remained undetected due to a lack of preservation. Sedimentary ancient DNA (sedaDNA), DNA sourced from proximal organisms and preserved in coeval sediments, is upending that limitation in the Late Quaternary record. Owing to recent advances in sequencing technology and genetics techniques, one small sediment sample can yield a broad snapshot of a past ecosystem, indicating the presence of species from microbes to mammals. 
    more » « less