skip to main content


Title: Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar: Woody Vegetation and Fluvial Topography
NSF-PAR ID:
10027359
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
122
Issue:
6
ISSN:
2169-9003
Page Range / eLocation ID:
1218 to 1235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plants influence river channel topography, but our understanding of the interaction among plants, flow, and sediment is limited, especially when sediment supply is variable. Using laboratory experiments in a recirculating flume with live seedlings in a mobile sand bed, we demonstrate how varying the balance between sediment supply and transport capacity shifts the relationship between plants and bar‐surface topography. Each experimental trial contrasted two sediment conditions, in which initially supply was maintained in equilibrium with transport via sediment recirculation, followed by sediment deficit, in which transport capacity exceeded supply, which was set to zero. For both sediment balances, the topographic response was sensitive to plant size, with larger plants inducing greater aggradation relative to a baseline condition. During sediment equilibrium, the positive relationship between plant size and topographic change also depended on species morphology (multi‐stemmed shrubs versus single‐stemmed plants). Plant morphology effects disappeared when the sediment balance shifted to a deficit, but the presence of plants had a greater impact on the magnitude of change compared to the topographic response under sediment equilibrium. Our results suggest that the interactions among sediment supply, plants, and topography may be strongest on rivers with a balance in sediment supply and transport capacity. Because of the large variability in fluvial sediment supply resulting from natural and anthropogenic influences, these interactions will differ spatially (e.g. longitudinally through a watershed) and at different temporal scales, from single flood events to longer time periods. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  2. We review select mature geomorphic transport laws for use in temperate ridge and valley landscapes and compile parameter estimates for use in applications. This work is motivated by a case study of sensitivity analysis, calibration, validation, multimodel comparison, and prediction under uncertainty, which required bounding values for parameter ranges. Considered geomorphic transport formulae span hillslope sediment transport, soil production, and erosion by surface water. We compile or derive estimates for the parameters in these transport formulae. Additionally, we address a common challenge—connecting changes in precipitation distribution to changes in effective erodibility—by using a simple hydrologic model and a method to estimate precipitation distribution parameters using commonly available data. While some parameters are reasonably well constrained, others span orders of magnitude. Some, such as soil infiltration capacity, have a direct physical meaning but are challenging to measure on geologically relevant timescales. Through the process of compiling these ranges we identify common challenges in parameter determination. The issue of comparable units derives from considering an exponent as an empirically inferred coefficient rather than as an expression of a fundamental relationship. The issue of appropriate timescales derives from the mismatch between human measurement and geologic timescales. This contribution thus serves both as a practical compilation for applications and as a synthesis of outstanding challenges in parameter selection for geomorphic transport laws.

     
    more » « less
  3. null (Ed.)
    The goal of this research was to characterize the impact of invasive riparian vegetation on burn severity patterns and fluvial topographic change in an urban Mediterranean riverine system (Med-sys) after fire in San Diego, California. We assessed standard post-fire metrics under urban conditions with non-native vegetation and utilized field observations to quantify vegetation and fluvial geomorphic processes. Field observations noted both high vegetation loss in the riparian area and rapidly resprouting invasive grass species such as Arundo donax (Giant Reed) after fire. Satellite-based metrics that represent vegetation biomass underestimated the initial green canopy loss, as did volumetric data derived from three-dimensional terrestrial laser scanning data. Field measurements were limited to a small sample size but demonstrated that the absolute maximum topographic changes were highest in stands of Arundo donax (0.18 to 0.67 m). This work is the first quantification of geomorphic alterations promoted by non-native vegetation after fire and highlights potential grass–fire feedbacks that can contribute to geomorphic disruption. Our results support the need for ground-truthing or higher resolution when using standard satellite-based indices to assess post-fire conditions in urban open spaces, especially when productive invasive vegetation are present, and they also emphasize restoring urban waterways to native vegetation conditions. 
    more » « less