A ‘Semi-Protected Oligonucleotide Recombination’ Assay for DNA Mismatch Repair in vivo Suggests Different Modes of Repair for Lagging Strand Mismatches
- Award ID(s):
- 1244297
- PAR ID:
- 10027622
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 45
- Issue:
- 8
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- e63
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)In this paper we argue for using many partial test suites instead of one full test suite during program repair. This may provide a pool of simpler, yet correct patches, addressing both the overfitting and poor repair quality problem. To support this idea, we present some insight obtained running APR partial test suites on the well studied triangle program.more » « less
-
Abstract We present a new class of DNA‐based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding‐upon‐repair DNA nanoswitches are synthetic DNA sequences containingO6‐methyl‐guanine (O6‐MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of theO6‐MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding‐upon‐repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.more » « less
An official website of the United States government

