- PAR ID:
- 10027797
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 122
- Issue:
- 7
- ISSN:
- 2169-9313
- Page Range / eLocation ID:
- 5268 to 5287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract The 2017 flash drought arrived without early warning and devastated the U.S. northern Great Plains region comprising Montana, North Dakota, and South Dakota and the adjacent Canadian Prairies. The drought led to agricultural production losses exceeding $2.6 billion in the United States, widespread wildfires, poor air quality, damaged ecosystems, and degraded mental health. These effects motivated a multiagency collaboration among academic, tribal, state, and federal partners to evaluate drought early warning systems, coordination efforts, communication, and management practices with the goal of improving resilience and response to future droughts. This essay provides an overview on the causes, predictability, and historical context of the drought, the impacts of the drought, opportunities for drought early warning, and an inventory of lessons learned. Key lessons learned include the following: 1) building partnerships during nondrought periods helps ensure that proper relationships are in place for a coordinated and effective drought response; 2) drought information providers must improve their understanding of the annual decision cycles of all relevant sectors, including, and beyond, direct impacts in agricultural sectors; and 3) ongoing monitoring of environmental conditions is vital to drought early warning, given that seasonal forecasts lack skill over the northern Great Plains.more » « less
-
Abstract Seismic activity in the Northern Canadian Cordillera is characterized by diffuse earthquakes that extend hundreds of km northwest from the Yakutat collision zone. We use 25 months of broadband seismic data from Mackenzie Mountain Earthscope Project (MMEP), USArray Transportable Array (TA), and permanent Canadian National Seismic Network stations to present a local earthquake catalog with high sensitivity to small regional events. Deep learning techniques are adopted for both seismic phase detection and association. Event relocations are performed to provide well constrained estimates of earthquake depth distributions. Clusters of seismicity spanning the upper crust are located in the central Richardson Mountains, along the Tintina fault, and in the northeast Selwyn Basin. These clusters suggest that the core of the Richardson Anticlinorium is tectonically active and that the Tintina fault is a locus for low levels of active deformation. We interpret seismicity in the northeast Selwyn Basin as primarily occurring in the hanging wall of the Plateau thrust fault and suggest that some combination of localized duplex structures and lithological strength contrasts both within the Selwyn Basin and between abutting Paleozoic shelf sequences may be responsible for seismicity in the Mackenzie Mountain foreland.
-
Abstract The Mackenzie Mountains (MMs) in the Yukon and Northwest Territories, Canada, are an enigmatic mountain range. They are currently uplifting (Leonard et al., 2008,
https//doi.org/10.1029/2007JB005456 ), yet are about 700 km from the nearest plate boundary. Their arcuate shape is distinct and extends over 100 km eastward from the general trend of the Northern Canadian Cordillera. To better assess the cause and conditions of the current uplift, we processed ambient seismic noise data from a linear array of broadband seismographs crossing the mountains, along with other regional seismic stations, to estimate Rayleigh wave phase velocities between 6 and 40 s periods. From this, we estimated phase velocity dispersion and performed a tomographic inversion to estimateV S . Tomography reveals a low‐velocity structure that extends upward from the base of the ∼50–66 km thick lithosphere to the upper crust, and we hypothesize that inferred low density and low rigidity associated with theV S anomaly localizes the ongoing uplift and thrust‐dominated seismicity of the MMs. Additionally, we find relatively low crustal velocities that extend to the west of the MMs, suggesting that strain transfer from the Gulf of Alaska plate boundary plays a driving role as the crust translates to the northeast and buckles up against the craton consistent with the orogenic float hypothesis of Mazzotti and Hyndman (2002,https//doi.org/10.1130/0091-7613(2002)030〈0495:YCASTA〉2.0.CO;2 ). Finally, we observe lithospheric azimuthal anisotropy with an NW‐SE fast direction. This is nearly orthogonal to teleseismic shear wave splitting measurements in the central MMs, and suggests that asthenosphere flow and lithospheric strain are not aligned in this region. -
Abstract Neoproterozoic–Cambrian rocks of the Windermere Supergroup and overlying units record the breakup of Rodinia and formation of the northwestern Laurentian ancestral continental margin. Understanding the nature and timing of this transition has been hampered by difficulty correlating poorly dated sedimentary successions from contrasting depositional settings across Mesozoic structures. Here we present new litho- and chemo-stratigraphic data from a Cryogenian–lower Cambrian succession in east-central Yukon (Canada), establish correlations between proximal and distal parts of the upper Windermere Supergroup and related strata in the northern Canadian Cordillera, and consider implications for the formation of the northwestern Laurentian margin. The newly defined Nadaleen Formation hosts the first appearance of Ediacaran macrofossils, while the overlying Gametrail Formation features a large negative carbon isotope anomaly with δ13Ccarb values as low as –13‰ that correlates with the globally developed Shuram-Wonoka anomaly. We also define the Rackla Group, which includes the youngest (Ediacaran) portions of the Windermere Supergroup in the northern Cordillera. The top of the Windermere Supergroup is marked by an unconformity above the Risky Formation that passes into a correlative conformity in the Nadaleen River area. This surface has been interpreted to mark the top of the rift-related succession, but we draw attention to evidence for tectonic instability through the early-middle Cambrian and argue that the transition from rifting to post-rift thermal subsidence is marked by a widespread unconformity that underlies upper Cambrian carbonate rocks. This is younger than the interpreted age of the rift to post-rift transition elsewhere along the ancestral western Laurentian continental margin.more » « less