skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: A multiresolution inversion for imaging the ionosphere: A Multiresolution Ionospheric Inversion
PAR ID:
10027895
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
122
Issue:
6
ISSN:
2169-9380
Page Range / eLocation ID:
6799 to 6811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Efficiently capturing the long-range patterns in sequential data sources salient to a given task -- such as classification and generative modeling -- poses a fundamental challenge. Popular approaches in the space tradeoff between the memory burden of brute-force enumeration and comparison, as in transformers, the computational burden of complicated sequential dependencies, as in recurrent neural networks, or the parameter burden of convolutional networks with many or large filters. We instead take inspiration from wavelet-based multiresolution analysis to define a new building block for sequence modeling, which we call a MultiresLayer. The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence. Our MultiresConv can be implemented with shared filters across a dilated causal convolution tree. Thus it garners the computational advantages of convolutional networks and the principled theoretical motivation of wavelet decompositions. Our MultiresLayer is straightforward to implement, requires significantly fewer parameters, and maintains at most a (NlogN) memory footprint for a length N sequence. Yet, by stacking such layers, our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks using CIFAR-10, ListOps, and PTB-XL datasets. 
    more » « less
  2. null (Ed.)
    The ability for a smart speaker to localize a user based on his/her voice opens the door to many new applications. In this paper, we present a novel system, MAVL, to localize human voice. It consists of three major components: (i) We first develop a novel multi-resolution analysis to estimate the AoA of time-varying low-frequency coherent voice signals coming from multiple propagation paths; (ii) We then automatically estimate the room structure by emitting acoustic signals and developing an improved 3D MUSIC algorithm; (iii) We finally re-trace the paths using the estimated AoA and room structure to localize the voice. We implement a prototype system using a single speaker and a uniform circular microphone array. Our results show that it achieves median errors of 1.49 degree and 3.33 degree for the top two AoAs estimation and achieves median localization errors of 0.31m in line-of-sight (LoS) cases and 0.47m in non-line-of-sight (NLoS) cases. 
    more » « less