The growing market of the mobile application is overtaking the web application. Mobile application development environment is open source, which attracts new inexperienced developers to gain hands on experience with application development. However, the security of data and vulnerable coding practice is an issue. Among all mobile Operating systems such as, iOS (by Apple), Android (by Google) and Blackberry (RIM), Android dominates the market. The majority of malicious mobile attacks take advantage of vulnerabilities in mobile applications, such as sensitive data leakage via the inadvertent or side channel, unsecured sensitive data storage, data transition and many others. Most of these vulnerabilities can be detected during mobile application analysis phase. In this paper, we explore vulnerability detection for static and dynamic analysis tools. We also suggest limitations of the tools and future directions such as the development of new plugins.
more »
« less
Spartan Jester: end-to-end information flow control for hybrid Android applications
Web-based applications are attractive due to their portability. To leverage that, many mobile applications are hybrid, incorporating a web component that implements most of their functionality. While solutions for enforcing security exist for both mobile and web applications, enforcing and reasoning about the security of their combinations is difficult. We argue for a combination of static and dynamic analysis for assurance of end-to-end confidentiality in hybrid apps. We show how information flows in hybrid Android applications can be secured through use of SPARTA, a static analyzer for Android/Java, and JEST, a dynamic monitor for JavaScript, connected by a compatibility layer that translates policies and value representations. This paper reports on our preliminary investigation using a case study.
more »
« less
- PAR ID:
- 10028015
- Date Published:
- Journal Name:
- IEEE Mobile Security Technologies (MoST)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As 5G networks are gradually rolled out worldwide, it is important to ensure that their network infrastructures are resilient against malicious attacks. This work presents VET5G, a new virtual end-to-end testbed for 5G network security research experiments or training activities such as Capture-The-Flag competitions. The distinguishing features of VET5G include a home-grown 5G core network emulator written in Rust to ensure memory and thread safety, integration of OpenAirInterface’s Radio Access Network emulator and the official Android emulator to achieve full end-to-end 5G network emulation, inclusion of a reference P4 software switch to assist with prototyping of defense mechanisms for 5G data planes, implementation of Python APIs for easy 5G network experimentation, and adoption of JupyterHub to support multi-user experimentation. In our experiments we demonstrate how to use VET5G for two attack scenarios in 5G networks as well as its performance when it is used in a 5G hacking project for a Mobile Systems Security course.more » « less
-
The security threats to mobile application are growing explosively. Mobile app flaws and security defects could open doors for hackers to easily attack mobile apps. Secure software development must be addressed earlier in the development life cycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of software and mitigate the consequence of damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time in Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time. Secure software development must be addressed earlier in the development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of software and mitigate the consequence of damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time.more » « less
-
The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors.more » « less
-
In this paper, we describe Mobile CoWPI, a deployable, end-to-end secure mobile group messaging application with proofs of security. Mobile CoWPI allows dynamic groups of users to participate in, join, and leave private, authenticated conversations without requiring the participants to be simultaneously online or maintain reliable network connectivity. We identify the limitations of mobile messaging and how they affect conversational integrity and deniability. We define strong models of these security properties, prove that Mobile CoWPI satisfies these properties, and argue that no protocol that satisfies these properties can be more scalable than Mobile CoWPI. We also describe an implementation of Mobile CoWPI and show through experiments that it is suitable for use in real-world messaging conditions.more » « less