skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical Physics – Getting students Active in Learning Materials Science
ABSTRACT Physics forms the core of any Materials Science Programme at undergraduate level. Knowing the properties of materials is fundamental to developing and designing new materials and new applications for known materials. “Physical Physics” is a physics education approach which is an innovative and promising instruction model that integrates physical activity with mechanics and material properties. It aims to significantly enhance the learning experience and to illustrate how physics works, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying mechanics on a Games Development Programme. It is a structured guided learning approach which provides a scaffold for learners to develop their problem solving skills. The objective of having applied physics on a programme is to introduce students to the mathematical world. Today students view the world through smart devices. By incorporating student recorded videos into the laboratory experience the student can visualise the mathematical world. Sitting in a classroom learning about material properties does not easily facilitate an understanding of mathematical equations as mapping to a physical reality. In order to get the students motivated and immersed in the real mathematical and physical world, an approach which makes them think about the cause and effect of actions is used. Incorporating physical action with physics enables students to assimilate knowledge and adopt an action problem solving approach to the physics concept. This is an integrated approach that requires synthesis of information from various sources in order to accomplish the task. As a transferable skill, this will ensure that the material scientists will be visionary in their approach to real life problems.  more » « less
Award ID(s):
1663296
PAR ID:
10028088
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
MRS Advances
Volume:
2
Issue:
31-32
ISSN:
2059-8521
Page Range / eLocation ID:
1635 to 1641
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] We discuss an investigation of student sensemaking and reasoning in the context of degenerate perturbation theory (DPT) in quantum mechanics. We find that advanced undergraduate and graduate students in quantum physics courses often struggled with expertlike sensemaking and reasoning to solve DPT problems. The sensemaking and reasoning were particularly challenging for students as they tried to integrate physical and mathematical concepts to solve DPT problems. Their sensemaking showed local coherence but lacked global consistency with different knowledge resources getting activated in different problem-solving tasks even if the same concepts were applicable. Depending upon the issues involved in the DPT problems, students were sometimes stuck in the “physics mode” or “math mode” and found it challenging to coordinate and integrate the physics and mathematics appropriately to solve quantum mechanics problems involving DPT. Their sensemaking shows the use of various reasoning primitives. It also shows that some advanced students struggled with self-monitoring and checking their answers to make sure they were consistent across different problems. Some also relied on memorized information, invoked authority, and did not make appropriate connections between their DPT problem solutions and the outcomes of experiments. Advanced students in quantum mechanics often displayed analogous patterns of challenges in sensemaking and reasoning as those that have been found in introductory physics. Student sensemaking and reasoning show that these advanced students are still developing expertise in this novel quantum physics domain as they learn to integrate physical and mathematical concepts. Published by the American Physical Society2024 
    more » « less
  2. Sophomore level engineering mechanics classes typically have high rates of failure or withdrawal. Some explanations posited for this phenomenon include lack of student preparation, the difficulty of the material, ineffective instructional methods, and lack of context. Instructors and textbook authors attempt to overcome these issues with a range of pedagogical approaches such as math reviews, worked examples focused on problem solving processes, “real-world” problems, and active learning focused on physical understanding. However, the first step in the problem-solving process, abstracting the problem, is very often missing. At a fundamental level, engineers follow a four-step design process: (1) Describing or abstracting the physical world with diagrams, words, numbers, and equations (2) Analyzing their model (3) Designing something based on that analysis, and (4) Constructing the designed system. Sophomore mechanics classes traditionally focus on step (2) largely bypassing step (1), instead presenting students with drawings, numbers, and text and teaching them to apply appropriate equations. The goals of this research are (1) to develop a sophomore-level mechanics class that flips the traditional approach by starting with the physical world application and focusing on developing students’ ability to abstract as a precursor to analysis; and (2) to assess if this new approach improves student self-efficacy in basic mechanics. The hypothesis of the proposed research is that, by starting with abstraction, students will build a stronger connection between the physical world and the mechanics modeling. In turn, this will improve student’s perceptions about their ability to solve engineering mechanics problems and their motivation to pursue careers as engineers in the future. The specific research questions we seek to answer are: (1) In what ways does teaching students how to abstract the physical world affect their self-efficacy to solve problems in a basic mechanics class? and (2) In what ways does showing students how to abstract the physical world into tractable engineering science problems affect their future-oriented motivation? We are employing a mixed methods approach that combines quantitative survey data with observations, interviews, and course artifacts to address our research questions. The first phase of our research will establish baseline survey data from statics classes taught in a traditional lecture style that will be compared in future iterations of the course in which students engage in problem abstraction as the first step in the problem-solving process. Results will be presented on the baseline survey data assessing students’ problem-solving self-efficacy and future oriented motivation. In addition to the baseline survey results, we will present example lesson plans, worksheets, class assessments, and an example physical model to illustrate how abstraction will be used in the classroom. Future directions for this project will also be discussed. 
    more » « less
  3. [This paper is part of the Focused Collection in Artificial Intelligence Tools in Physics Teaching and Physics Education Research.] One of the greatest weaknesses of physics education research is the paucity of research on graduate education. While there are a growing number of investigations of graduate student degree progress and admissions, there are very few investigations of at the graduate level. Additionally, existing studies of learning in physics graduate programs frequently focus on content knowledge rather than professional skills such as problem solving. Given that over 90% of physics Ph.D. graduates report solving technical problems regularly in the workplace, we sought to develop an assessment to measure how well graduate programs are training students to solve problems. Using a framework that characterizes expert-like problem-solving skills as a set of decisions to be made, we developed and validated such an assessment in graduate quantum mechanics (QM) following recently developed design frameworks for measuring problem solving and best practices for assessment validation. We collected validity evidence through think-aloud interviews with practicing physicists and physics graduate students, as well as written solutions provided by physics graduate and undergraduate students. The assessment shows strong potential in differentiating novice and expert problem solving in QM and showed reliability in repeated testing with similar populations. These results show the promise of measuring expert decision making in graduate QM and provide baseline measurements for future educational interventions to more effectively teach these skills. Published by the American Physical Society2025 
    more » « less
  4. The objective of this paper is to provide a holistic summary of ongoing research related to the development, implementation, assessment, and continuous refinement of an augmented reality (AR) app known as Vectors in Space. This Unity-based app was created by the authors and provides a self-guided learning experience for students to learn about fundamental vector concepts routinely encountered in undergraduate physics and engineering mechanics courses. Vectors are a fundamental tool in mechanics courses as they allow for the precise and comprehensive description of physical phenomena such as forces, moments, and motion. In early engineering coursework, students often perceive vectors as an abstract mathematical concept that requires spatial visualization skills in three dimensions (3D). The app aims to allow students to build these tacit skills while simultaneously allowing them to learn fundamental vector concepts that will be necessary in subsequent coursework. Three self-paced, guided learning activities systematically address concepts that include: (a) Cartesian components of vectors, (b) unit vectors and directional angles, (c) addition, (d) subtraction, (e) cross product using the right-hand rule, (f) angle between vectors using the dot product, and (g) vector projections using the dot product. The authors first discuss the app's scaffolding approach with special attention given to the incorporation of Mayer's principles of multimedia learning as well as the use of animations. The authors' approach to develop the associated statics learning activities, practical aspects of implementation, and lessons learned are shared. The effectiveness of the activities is assessed by applying analysis of covariance (ANCOVA) to pre- and post-activity assessment scores for control and treatment groups. Though the sample sizes are relatively small (less than 50 students), the results demonstrate that AR had a positive impact on student learning of the dot product and its applications. Larger sample sizes and refinements to the test instruments will be necessary in the future to draw robust conclusions regarding the other vector topics and operations. Qualitative feedback from student focus groups conducted with undergraduate engineering students identified the app's strengths as well as potential areas of improvement. 
    more » « less
  5. This paper presents the development and preliminary implementation of a multi-scale material and mechanics education module to improve undergraduate solid mechanics education. We experimentally characterize 3D printed and conventional wrought aluminum samples and collect structural images and perform testing at the micro- and macro- scales. At the micro-scale, we focus on the visualization of material’s grain structures. At the macro-scale, standard material characterization following ASTM standards is conducted to obtain the macroscopic behavior. Digital image correlation technology is employed to obtain the two-dimensional strain field during the macro-scale testing. An evaluation of student learning of solid mechanics and materials behavior concepts is carried out to establish as baseline before further interventions are introduced. The established multi-scale mechanics and materials testing dataset will be also used in a broad range of undergraduate courses, such as Solid Mechanics, Design of Mechanical Components, and Manufacturing Processes, to inform curricular improvement. The successful implementation of this multi-scale approach for education is likely to enhance students’ understanding of abstract solid mechanics theories and establish links between mechanics and materials concepts. More broadly, this approach will assist advanced solid mechanics education in undergraduate engineering education throughout the country. 
    more » « less