skip to main content


Title: Dependence of model-simulated response to ozone depletion on stratospheric polar vortex climatology: RESPONSE TO OZONE DEPENDS ON CLIMATOLOGY
NSF-PAR ID:
10028313
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
12
ISSN:
0094-8276
Page Range / eLocation ID:
6391 to 6398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stratosphere‐Troposphere exchange (STE) of air mass and ozone in ERA5 and Modern Era Retrospective analysis for Research and Application, version 2 (MERRA2) reanalyses from 1980 to 2022 are investigated on their seasonal cycle, annual‐mean climatology, and monthly anomalies smoothed using a 1‐year Lanczos low‐pass filter. We employ a lowermost stratosphere mass budget approach with dynamic isentropic surfaces fitted to tropical tropopause as the upper boundary of lowermost stratosphere. The annual‐mean ozone STEs over the NH extratropics, SH extratropics, tropics, extratropics, and globe in ERA5 are −342, −239, 201, −581, and −380 Tg year−1, respectively, versus −305, −224, 168, −529, −361 Tg year−1from MERRA2. The annual‐mean global ozone STE difference between ERA5 and MERRA2 is dominated by the diabatic heating difference, partly compensated by the ozone concentration difference. There are about 40% (−40%) differences between ERA5 and MERRA2 in global ozone STEs in boreal summer (autumn), mainly due to the difference in seasonal breathing of the lowermost stratosphere ozone mass between reanalyses. The correlation coefficient between ERA5 and MERRA2 global ozone mass STE monthly anomalies is 0.57 and thus ERA5 and MERRA2 can only explain each other's variance by 33%. Multiple linear regression analysis shows that El Niño–Southern Oscillation, quasi‐biennial oscillation, and Brewer‐Dobson circulation explain the variance in the ERA5 (MERRA2) global ozone STE monthly anomalies by 17.3 (5.0), 5.4 (7.2), and 1.0 (3.1)%, respectively. The volcanic aerosol impacts on ozone STEs from ERA5 and MERRA2 have opposite signs and thus are inconclusive. Cautions are therefore needed when using ERA5 and MERRA2 to investigate the STE seasonal cycle and interannual variability.

     
    more » « less
  2. Abstract To better understand the dynamics and impacts of blocking events, their 3D structure needs to be further investigated. We present a comprehensive composite analysis of the 3D structure of blocks and its response to future climate change over North Pacific, North Atlantic, and Russia in summers and winters using reanalysis and two large-ensemble datasets from CESM1 and GFDLCM3. In reanalysis, over both ocean and land, the anomalous winds are equivalent-barotropic in the troposphere and stratosphere, and temperature anomalies are positive throughout the troposphere and negative in the lower stratosphere. The main seasonal and regional differences are that blocks are larger/stronger in winters; over oceans, the temperature anomaly is shifted westward due to latent heating. Analyzing the temperature tendency equation shows that in all three sectors, adiabatic warming due to subsidence is the main driver of the positive temperature anomaly; however, depending on season and region, meridional thermal advection and latent heating might have leading-order contributions too. Both GCMs are found to reproduce the climatological 3D structure remarkably well, but sometimes disagree on future changes. Overall, the future summertime response is weakening of all fields (except for specific humidity), although the impact on near-surface temperature is not necessarily weakened; e.g., the blocking-driven near-surface warming over Russia intensifies. The wintertime response is strengthening of all fields, except for temperature in some cases. Responses of geopotential height and temperature are shifted westward in winters, most likely due to latent heating. Results highlight the importance of process-level analyses of blocks’ 3D structure for improved understanding of the resulting temperature extremes and their future changes. 
    more » « less
  3. null (Ed.)
  4. Abstract

    The climatology of earth's Na density over Fort Collins, CO (41°N, 105°W) based on nocturnal Na lidar observations between 1990 and 1999 was reported by She et al. (2000,https://doi.org/10.1029/2000gl003825). Based on a continued 28‐year data set between 1990 and 2017 with the latter part observed over Logan, UT (42N, 112W), we update the seasonal variations between 80 and 110 km. This data set is also used to deduce long‐term responses of Na density (profile) between 75 and 110 km, showing a positive linear trend between 75 and 93 km (with maximum ∼2.87 × 108 m−3/decade at 87 km); it turns negative before approaching zero at 110 km (with minimum ∼−2.96 × 107 m−3/decade at 100 km). The associated solar response is also positive for the altitude range in question (with maximum ∼5.20 × 106 m−3/SFU at 91 km). We also derived the 28‐year mean Na layer column abundance, centroid altitude, and root mean square width to be 3.92 ± 2.14 1013 m−2, 91.3 ± 1.0 km, and 4.62 ± 0.56 km, respectively, and deduced long‐term trend and solar cycle responses of column abundance and centroid altitude, respectively to be 7.81 ± 1.63%/decade and 16.9 ± 2.8%/100SFU, and −355 ± 35 m/decade and −1.94 ± 0.69 m/SFU. We explained conceptually how positive long‐term responses in Na density led to positive responses in column abundance and negative responses in centroid altitude.

     
    more » « less
  5. Abstract

    Supercells in landfalling tropical cyclones (TCs) often produce tornadoes that can cause fatalities and extensive damage. In previous studies, many tornadoes have been shown to form <50 km from the coast, and their parent storms may also intensify as they cross the coastal boundary. This study uses WSR‐88D observations of TC tornadic mesocyclones from 2011 to 2018 to examine changes in their low‐level rotation upon moving onshore. We will show that radar‐derived azimuthal shear tends to increase in storms that cross the coastal boundary. Similar intensification trends are also found in radar‐derived (supercell) storm‐scale divergence, such that storm‐scale convergence increases as storms move onshore. It is likely changes in the near‐coast vertical wind shear and/or near‐shore convergence helps explain supercell intensification, which is important to consider particularly in operational settings.

     
    more » « less