skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Experimental fossilization of mat‐forming cyanobacteria in coarse‐grained siliciclastic sediments

Microbial fossils and textures are commonly preserved in Ediacaran and early Cambrian coarse‐grained siliciclastic sediments that were deposited in tidal and intertidal marine settings. In contrast, the fossilization of micro‐organisms in similar marine environments of post‐Cambrian age is less frequently reported. Thus, temporal discrepancies in microbial preservation may have resulted from the opening and closing of a unique taphonomic window during the terminal Proterozoic and early Phanerozoic, respectively. Here, we expand upon previous work to identify environmental factors which may have facilitated the preservation of cyanobacteria growing on siliciclastic sand, by experimentally determining the ability of microbial mats to trap small, suspended mineral grains, and precipitate minerals from ions in solution. We show that (i) fine grains coat the sheaths of filamentous cyanobacteria (e.g.,Nodosilineasp.) residing within the mat, after less than 1 week of cell growth under aerobic conditions, (ii) clay minerals do not coat sterile cellulose fibers and rarely coat unsheathed cyanobacterial cells (e.g.,Nostocsp.), (iii) stronger disturbances (where culture jars were agitated at 170 rpm; 3 mm orbital diameter) produce the smoothest and most extensive mineral veneers around cells, compared with those agitated at slower rotational speeds (150 and 0 rpm), and (iv) mineral veneers coating cyanobacterial cells are ~1 μm in width. These new findings suggest that sheathed filamentous cyanobacteria may be preferentially preserved under conditions of high fluid energy. We integrate these results into a mechanistic model that explains the preservation of microbial fossils and textures in Ediacaran sandstones and siltstones, and in fine‐grained siliciclastic deposits that contain exceptionally preserved microbial mats.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
p. 484-498
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Microbially induced sedimentary structures (MISS) are abundant in Ediacaran and lower Cambrian successions. However, the relationship between MISS distribution and facies has not been thoroughly explored in Ediacaran–Cambrian successions in South America. This study documents the occurrence of MISS and other potential biogenic structures from the late Ediacaran Serra de Santa Helena Formation in the Bambuí Group of eastern Brazil. This unit overlies the Cloudina-bearing Sete Lagoas Formation and is a mixed carbonate-siliciclastic succession devoid of macroscopic body fossils. Potential microbial structures include wrinkled structures such as “elephant-skin” and Kinneyia-like textures, as well as pustular structures and abundant positive epirelief discoidal structures. Another putative biogenic structure is a mm-wide meandering groove resembling a simple locomotion trail of a small vagile benthic metazoan. Microbial surface textures (i.e., “elephant skin” and Kinneyia-type wrinkles) were mainly observed in heterolithic deposits, usually at the interface between sandstone and siltstone/shale. On the other hand, discs show a facies-independent distribution, observed in heterolithic as well as carbonate and marl deposits. Petrographic analyses of these discs suggest that they have complex origins and some of them may be diagenetic structures. Thus, while facies may have strongly controlled the preservation of MISS-related structures and textures in the Serra de Santa Helena Formation, their abundance and diversity in tidal flat deposits indicate the wide distribution of matgrounds in these shallow marine paleoenvironments. Also, we demonstrate how detailed description and classification of simple features, such as discoidal structures, is an important task for paleoenvironmental reconstruction of marine ecosystems at the Ediacaran–Cambrian transition when the microbially bounded substrates played important roles in the dynamics of coastal environments. 
    more » « less
  2. Abstract

    The Ediacara biota features the rise of macroscopic complex life immediately before the Cambrian explosion. One of the most abundant and widely distributed elements of the Ediacara biota is the discoidal fossilAspidella, which is interpreted as a subsurface holdfast possibly anchoring a frondose epibenthic organism. It is a morphologically simple fossil preserved mainly in siliciclastic rocks, which are unsuitable for comprehensive stable isotope geochemical analyses to decipher its taphonomy and paleoecology. In this regard, three‐dimensionally preservedAspidellafossils from upper Ediacaran limestones of the Khatyspyt Formation in the Olenek Uplift of northern Siberia offer a rare opportunity to leverage geochemistry for insights into their taphonomy and paleoecology. To take advantage of this opportunity, we analyzed δ13Ccarb, δ18Ocarb, δ13Corg, δ34Spyr, and iron speciation of the KhatyspytAspidellafossils and surrounding sediment matrix in order to investigate whether they hosted microbial symbionts, how they were fossilized, and the redox conditions of their ecological environments.Aspidellaholdfasts and surrounding sediment matrix show indistinguishable δ13Corgvalues, suggesting they did not host and derive significant amount of nutrients from microbial symbionts such as methanogens, methylotrophs, or sulfide‐oxidizing bacteria. δ13Ccarb, δ18Ocarb, and δ34Spyrdata, along with petrographic observations, suggest that microbial sulfate reduction facilitated the preservation ofAspidellaby promoting early authigenic calcite cementation in the holdfasts before matrix cementation and sediment compaction. Iron speciation data are equivocal, largely because of the low total iron concentrations. However, consideration of published sulfur isotope and biomarker data suggests thatAspidellalikely lived in non‐euxinic waters. It is possible thatAspidellawas an opportunistic organism, colonizing the seafloor in large numbers when paleoenvironments were favorable. This study demonstrates that geochemical data of Ediacaran fossils preserved in limestones can offer important insights into the taphonomy and paleoecology of these enigmatic organisms living on the eve of the Cambrian explosion.

    more » « less
  3. The Ediacaran−Cambrian boundary strata in the Great Basin of the southwestern United States record biological, geochemical, and tectonic change during the transformative interval of Earth history in which metazoans diversified. Here, we integrate new and compiled chemostratigraphic, paleontological, sedimentological, and stratigraphic data sets from the Death Valley region, the White-Inyo Ranges, and Esmeralda County in Nevada and California and evaluate these data within a regional geologic framework. A large negative carbon isotope (δ13C) excursion—also known as the Basal Cambrian Excursion, or BACE—is regionally reproducible, despite lateral changes in sedimentary facies and dolomitization across ∼250 km, consistent with a primary marine origin for this perturbation. Across the southern Great Basin, Ediacaran body fossils are preserved in a variety of taphonomic modes, including cast and mold preservation, two-dimensional compressional preservation, two-dimensional and three-dimensional pyritization, and calcification. The stratigraphic framework of these occurrences is used to consider the relationships among taphonomic modes for fossil preservation and paleoenvironmental settings within this basin. In this region, Ediacaran-type fossils occur below the nadir of the BACE, while Cambrian-type trace fossils occur above. Sedimentological features that include giant ooids, stromatolites, and textured organic surfaces are widespread and abundant within the interval that records biotic turnover and coincide with basaltic volcanism and the BACE. We hypothesize that the prevalence of these sedimentological features, the BACE, and the disappearance of some Ediacaran clades were caused by environmental perturbation at the Ediacaran-Cambrian boundary. 
    more » « less
  4. Abstract

    Cryogenian cap carbonates that overlie Sturtian glacial deposits were formed during a post‐glacial transgression. Here, we describe microfossils from the Kakontwe Formation of Zambia and the Taishir Formation of Mongolia—both Cryogenian age, post‐Sturtian cap carbonates—and investigate processes involved in their formation and preservation. We compare microfossils from these two localities to an assemblage of well‐documented microfossils previously described in the post‐Sturtian Rasthof Formation of Namibia. Microfossils from both new localities have 10 ± 1 μm‐thick walls composed of carbonaceous matter and aluminosilicate minerals. Those found in the Kakontwe Formation are spherical or ovoid and 90 ± 5 μm to 200 ± 5 μm wide. Structures found in the Taishir Formation are mostly spherical, 50 ± 5 μm to 140 ± 5 μm wide, with distinct features such as blunt or concave edges. Chemical and mineralogical analyses show that the walled structures and the clay fraction extracted from the surrounding sediments are composed of clay minerals, especially muscovite and illite, as well as quartz, iron and titanium oxides, and some dolomite and feldspar. At each locality, the mineralogy of the microfossil walls matched that of the clay fractions of the surrounding sediment. The abundance of these minerals in the walled microfossils relative to the surrounding carbonate matrix and microbial laminae, and the presence of minerals that cannot precipitate from solution (titanium oxide and feldspar), suggests that the composition represents the original mineralogy of the structures. Furthermore, the consistency in mineralogy of both microfossils and sediments across the three basins, and the uniformity of size and shape among mineral grains in the fossil walls indicate that these organisms incorporated these minerals by primary biological agglutination. The discovery of new, mineral‐rich microfossil assemblages in microbially laminated and other fine‐grained facies of Cryogenian cap carbonates from multiple localities on different palaeocontinents demonstrates that agglutinating eukaryotes were widespread in carbonate‐dominated marine environments in the aftermath of the Sturtian glaciation.

    more » « less
  5. The Ediacaran-Cambrian transition interval is described for the west part of the Gondwana Supercontinent. This key interval in Earth’s history is recorded in the upper and lower part of the Tagatiya Guazú and Cerro Curuzu formations, Itapucumi Group, Paraguay, encompassing a sedimentary succession deposited in a tidally influenced mixed carbonate-siliciclastic ramp. The remarkable presence of cosmopolitan Ediacaran shelly fossils and treptichnids, which are recorded in carbonate and siliciclastic deposits, respectively, suggests their differential preservation according to lithology. Their distribution is conditioned by substrate changes that are related to cyclic sedimentation. The associated positive steady trend of the δ13C values in the carbonate facies indicates that the Tagatiya Guazú succession is correlated to the late Ediacaran positive carbon isotope plateau. Sensitive high-resolution ion microprobe U-Pb ages of volcanic zircons from an ash bed ∼30 m above the fossil-bearing interval in the Cerro Curuzu Formation indicate an Early Cambrian (Fortunian) depositional age of 535.7 ± 5.2 Ma. As in other coeval sedimentary successions worldwide, the co-occurrence of typical Ediacaran skeletal taxa and relatively complex trace fossils in the studied strata highlights the global nature of key evolutionary innovations. 
    more » « less