skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mixed Arlequin method for multiscale poromechanics problems: Mixed Arlequin method for multiscale poromechanics problems
Award ID(s):
1462760
PAR ID:
10028638
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Volume:
111
Issue:
7
ISSN:
0029-5981
Page Range / eLocation ID:
624 to 659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strong coupling between geomechanical deformation and multiphase fluid flow appears in a variety of geoscience applications. A common discretization strategy for these problems is a continuous Galerkin finite element scheme for the momentum balance equation and a finite volume scheme for the mass balance equations. When applied within a fully implicit solution strategy, however, this discretization is not intrinsically stable. In the limit of small time steps or low permeabilities, spurious oscillations in the piecewise-constant pressure field, i.e., checkerboarding, may be observed. Further, eigenvalues associated with the spurious modes will control the conditioning of the matrices and can dramatically degrade the convergence rate of iterative linear solvers. Here, we propose a stabilization technique in which the mass balance equations are supplemented with stabilizing flux terms on a macroelement basis. The additional stabilization terms are dependent on a stabilization parameter. We identify an optimal value for this parameter using an analysis of the eigenvalue distribution of the macroelement Schur complement matrix. The resulting method is simple to implement and preserves the underlying sparsity pattern of the original discretization. Another appealing feature of the method is that mass is exactly conserved on macroelements, despite the addition of artificial fluxes. The efficacy of the proposed technique is demonstrated with several numerical examples. 
    more » « less
  2. In this paper, we consider a coupled system of equations that describes simplified magnetohydrodynamics (MHD) problem in perforated domains. We construct a fine grid that resolves the perforations on the grid level in order to use a traditional approximation. For the solution on the fine grid, we construct approximation using the mixed finite element method. To reduce the size of the fine grid system, we will develop a Mixed Generalized Multiscale Finite Element Method (Mixed GMsFEM). The method differs from existing approaches and requires some modifications to represent the flow and magnetic fields. Numerical results are presented for a two-dimensional model problem in perforated domains. This model problem is a special case for the general 3D problem. We study the influence of the number of multiscale basis functions on the accuracy of the method and show that the proposed method provides a good accuracy with few basis functions. 
    more » « less