skip to main content


Title: Sediment gravity flows triggered by remotely generated earthquake waves: Remotely Triggered Turbidites
NSF-PAR ID:
10028738
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
122
Issue:
6
ISSN:
2169-9313
Page Range / eLocation ID:
4584 to 4600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    3D structures that incorporate high‐performance electronic materials and allow for remote, on‐demand 3D shape reconfiguration are of interest for applications that range from ingestible medical devices and microrobotics to tunable optoelectronics. Here, materials and design approaches are introduced for assembly of such systems via controlled mechanical buckling of 2D precursors built on shape‐memory polymer (SMP) substrates. The temporary shape fixing and recovery of SMPs, governed by thermomechanical loading, provide deterministic control over the assembly and reconfiguration processes, including a range of mechanical manipulations facilitated by the elastic and highly stretchable properties of the materials. Experimental demonstrations include 3D mesostructures of various geometries and length scales, as well as 3D aquatic platforms that can change trajectories and release small objects on demand. The results create many opportunities for advanced, programmable 3D microsystem technologies.

     
    more » « less
  2. Abstract

    A frequently expressed viewpoint across the Earth science community is that global soil moisture estimates from satellite L‐band (1.4 GHz) measurements represent moisture only in a shallow surface layer (0–5 cm) and consequently are of limited value for studying global terrestrial ecosystems because plants use water from deeper rootzones. Using this argumentation, many observation‐based land surface studies avoid satellite‐observed soil moisture. Here, based on peer‐reviewed literature across several fields, we argue that such a viewpoint is overly limiting for two reasons. First, microwave soil emission depth considerations and statistical considerations of vertically correlated soil moisture information together indicate that L‐band measurements carry information about soil moisture extending below the commonly referenced 5 cm in many conditions. However, spatial variations of effective depths of representation remain uncertain. Second, in reviewing isotopic tracer field studies of plant water uptake, we find a prevalence of vegetation that primarily draws moisture from these upper soil layers. This is especially true for grasslands and croplands covering more than a third of global vegetated surfaces. Even some deeper‐rooted species (i.e., shrubs and trees) preferentially or seasonally draw water from the upper soil layers. Therefore, L‐band satellite soil moisture estimates are more relevant to global vegetation water uptake than commonly appreciated (i.e., relevant beyond only shallow soil processes like soil evaporation). Our commentary encourages the application of satellite soil moisture across a broader range of terrestrial hydrosphere and biosphere studies while urging more rigorous estimates of its effective depth of representation.

     
    more » « less