skip to main content


Title: Microscale and nanoscale strain mapping techniques applied to creep of rocks
Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, TTm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.  more » « less
Award ID(s):
1451022
NSF-PAR ID:
10028787
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Solid Earth
Volume:
8
Issue:
4
ISSN:
1869-9529
Page Range / eLocation ID:
751 to 765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The granitic water-saturated solidus (G-WSS) is the lower temperature limit of magmatic mineral crystallization. The accepted water-saturated solidus for granitic compositions was largely determined >60 years ago1. More recent advances in experimental petrology, improved analytical techniques, and recent observations that granitic systems can remain active or spend a significant proportion of their lives at conditions below the traditional G-WSS2–5 necessitate a careful experimental investigation of the near-solidus regions of granitic systems. Natural and synthetic starting materials were melted at 10 kbar and 900°C with 48 wt% H2O to produce hydrous glasses for subsequent experiments at lower PT conditions used to locate the G-WSS. We performed crystallization experiments and melting experiments at temperatures ranging from 575 to 800°C and 1, 6, 8, and 10 kbar on 12 granitoid compositions. First, we ran a series of isothermal crystallization experiments along each isobar at progressively lower temperatures until runs completely crystallized to identify apparent solidus temperatures. Geochemical analyses of quenched glass compositions demonstrate that progressive crystallization drives all starting compositions towards silica-rich, water-saturated rhyolitic/granitic melts (e.g., ~7578 wt% SiO2). After identifying the apparent solidus temperatures at which the various compositions crystallized, we then ran series of reversal-type melting experiments. With the goal of producing rocks with hydrous equilibrium microstructures, we crystallized compositions at temperatures ~10°C below the apparent solidus identified in crystallization experiments, and then heated isobarically to conditions that produced ~20% melt during the crystallization experiments. Importantly, crystallization experiments and heating experiments at the same PT conditions produced similar proportions of melt, crystals, and vapor. A time-series of experiments 230 days at PT conditions previously identified to produce ~10% to 20% melt did not reveal any kinetic effects on melt crystallization. Experiments at 6 to 10 kbar crystallized/melted at temperatures close to the published G-WSS. However, at lower pressures where the published G-WSS is strongly curved in PT space, all compositions investigated contained melt to temperatures ~75 to 100°C below the accepted G-WSS. The similarity of crystallization temperatures for the higher-pressure experiments to previously published results, similar phase proportions in melting and crystallization experiments, and the lack of kinetic effects on crystallization collectively suggest that our lower pressure constraints on the G-WSS are accurate. The new experimental results demonstrating that the lower-pressure G-WSS is significantly lower than unanimously accepted estimates will help us to better understand the storage conditions, evolution, and potential for eruption in mid- to upper-crustal silicic magmatic systems. (1) Tuttle, O.; Bowen, N. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8–KAlSi3O8–SiO2–H2O; Geological Society of America Memoirs; Geological Society of America, 1958; Vol. 74. https://doi.org/10.1130/MEM74. (2) Rubin, A. E.; Cooper, K. M.; Till, C. B.; Kent, A. J. R.; Costa, F.; Bose, M.; Gravley, D.; Deering, C.; Cole, J. Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science 2017, 356 (6343), 1154–1156. https://doi.org/10.1126/science.aam8720. (3) Andersen, N. L.; Jicha, B. R.; Singer, B. S.; Hildreth, W. Incremental Heating of Bishop Tuff Sanidine Reveals Preeruptive Radiogenic Ar and Rapid Remobilization from Cold Storage. Proceedings of the National Academy of Sciences 2017, 114 (47), 12407–12412. https://doi.org/10.1073/pnas.1709581114. (4) Ackerson, M. R.; Mysen, B. O.; Tailby, N. D.; Watson, E. B. Low-Temperature Crystallization of Granites and the Implications for Crustal Magmatism. Nature 2018, 559 (7712), 94–97. https://doi.org/10.1038/s41586-018-0264-2. (5) Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Lindgren, K. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology 2020, 175 (4). https://doi.org/10.1007/s00410-020-01677-1. 
    more » « less
  2. Geological carbon sequestration provides permanent CO2 storage to mitigate the current high concentration of CO2 in the atmosphere. CO2 mineralization in basalts has been proven to be one of the most secure storage options. For successful implementation and future improvements of this technology, the time-dependent deformation behavior of reservoir rocks in presence of reactive fluids needs to be studied in detail. We conducted load stepping creep experiments on basalts from the CarbFix site (Iceland) under several pore fluid conditions (dry, H2O-saturated and H2O+CO2-saturated) at temperature, T≈80 °C and effective pressure, Peff = 50 MPa, during which we collected mechanical, acoustic and pore fluid chemistry data. We observed transient creep at stresses as low as 11% of the ultimate failure strength, well below the stress level at the onset of bulk dilatancy. Acoustic emissions (AEs) correlated strongly with strain accumulation, indicating that the creep deformation was a brittle process in agreement with microstructural observations. The rate and magnitude of AEs were higher in fluid-saturated experiments than in dry conditions. We infer that the predominant mechanism governing creep deformation is time- and stress-dependent sub-critical dilatant cracking. Our results suggest that the presence of aqueous fluids exerts first order control on creep deformation of basaltic rocks, while the composition of the fluids plays only a secondary role under the studied conditions. 
    more » « less
  3. Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes. 
    more » « less
  4. Abstract Most exposed middle- and lower-crustal shear zones experienced deformation while cooling. We investigated the effect of the strengthening associated with such cooling on differential stress estimates based on recrystallized grain size. Typical geologic ratios of temperature change per strain unit were applied in Griggs Rig (high pressure-temperature deformation apparatus) general shear experiments on quartzite with cooling rates of 2–10 °C/h from 900 °C to 800 °C, and a shear strain rate of ∼2 × 10−5 s−1. Comparisons between these “cooling-ramp” experiments and control experiments at constant temperatures of 800 °C and 900 °C indicated that recrystallized grain size did not keep pace with evolving stress. Mean recrystallized grain sizes of the cooling-ramp experiments were twice as large as expected from the final stresses of the experiments. The traditional approach to piezometry involves a routine assumption of a steady-state microstructure, and this would underestimate the final stress during the cooling-ramp experiments by ∼40%. Recrystallized grain size in the cooling-ramp experiments is a better indicator of the average stress of the experiments (shear strains ≥3). Due to the temperature sensitivity of recrystallization processes and rock strength, the results may underrepresent the effect of cooling in natural samples. Cooling-ramp experiments produced wider and more skewed grain-size distributions than control experiments, suggesting that analyses of grain-size distributions might be used to quantify the degree to which grain size departs from steady-state values due to cooling, and thereby provide more accurate constraints on final stress. 
    more » « less
  5. Abstract

    Coseismic temperature rise activates fault dynamic weakening that promotes earthquake rupture propagation. The spatial scales over which peak temperatures vary on slip surfaces are challenging to identify in the rock record. We present microstructural observations and electron backscatter diffraction data from three small‐displacement hematite‐coated fault mirrors (FMs) in the Wasatch fault damage zone, Utah, to evaluate relations between fault properties, strain localization, temperature rise, and weakening mechanisms during FM development. Millimeter‐ to cm‐thick, matrix‐supported, hematite‐cemented breccia is cut by ∼25–200 μm‐thick, texturally heterogeneous veins that form the hematite FM volume (FMV). Grain morphologies and textures vary with FMV thickness over μm to mm lengthscales. Cataclasite grades to ultracataclasite where FMV thickness is greatest. Thinner FMVs and geometric asperities are characterized by particles with subgrains, serrated grain boundaries, and(or) low‐strain polygonal grains that increase in size with proximity to the FM surface. Comparison to prior hematite deformation experiments suggests FM temperatures broadly range from ≥400°C to ≥800–1100°C, compatible with observed coeval brittle and plastic deformation mechanisms, over sub‐mm scales on individual slip surfaces during seismic slip. We present a model of FM development by episodic hematite precipitation, fault reactivation, and strain localization, where the thickness of hematite veins controls the width of the deforming zones during subsequent fault slip, facilitating temperature rise and thermally activated weakening. Our data document intrasample coseismic temperatures, resultant deformation and dynamic weakening mechanisms, and the length scales over which these vary on slip surfaces.

     
    more » « less