skip to main content


Title: Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system: Omics Profiling of a Bacteria-Phytoplankton Model System
NSF-PAR ID:
10028905
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
19
Issue:
9
ISSN:
1462-2912
Page Range / eLocation ID:
3500 to 3513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The McMurdo Dry Valleys (MDVs), Antarctica, represent a cold, desert ecosystem poised on the threshold of melting and freezing water. The MDVs have experienced dramatic signs of climatic change, most notably a warm austral summer in 2001–2002 that caused widespread flooding, partial ice cover loss and lake level rise. To understand the impact of these climatic disturbances on lake microbial communities, we simulated lake level rise and ice‐cover loss by transplanting dialysis‐bagged communities from selected depths to other locations in the water column or to an open water perimeter moat. Bacteria and eukaryote communities residing in the surface waters (5 m) exhibited shifts in community composition when exposed to either disturbance, while microbial communities from below the surface were largely unaffected by the transplant. We also observed an accumulation of labile dissolved organic carbon in the transplanted surface communities. In addition, there were taxa‐specific sensitivities: cryptophytes and Actinobacteria were highly sensitive particularly to the moat transplant, while chlorophytes and several bacterial taxa increased in relative abundance or were unaffected. Our results reveal that future climate‐driven disturbances will likely undermine the stability and productivity of MDV lake phytoplankton and bacterial communities in the surface waters of this extreme environment.

     
    more » « less
  2. Abstract

    Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle.

     
    more » « less