skip to main content


Title: Magnetospheric Multiscale mission observations of the outer electron diffusion region: MMS OBSERVATIONS OF THE OUTER EDR
NSF-PAR ID:
10029160
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geophysical Research Letters
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs’ mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon’s Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to $\sim47~\text{au}$ ∼ 47 au from the Sun or halfway to the heliospheric termination shock. 
    more » « less
  2. null (Ed.)
    The availability of high quality surface observations of precipitation and volume observations by polarimetric operational radars make it possible to constrain, evaluate, and validate numerical models with a wide variety of microphysical schemes. In this article, a novel particle-based Monte-Carlo microphysical model (called McSnow) is used to simulate the outer rain bands of Hurricane Dorian which traversed the densely instrumented precipitation research facility operated by NASA at Wallops Island, Virginia. The rain bands showed steady stratiform vertical profiles with radar signature of dendritic growth layers near −15 °C and peak reflectivity in the bright band of 55 dBZ along with polarimetric signatures of wet snow with sizes inferred to exceed 15 mm. A 2D-video disdrometer measured frequent occurrences of large drops >5 mm and combined with an optical array probe the drop size distribution was well-documented in spite of uncertainty for drops <0.5 mm due to high wind gusts and turbulence. The 1D McSnow control run and four numerical experiments were conducted and compared with observations. One of the main findings is that even at the moderate rain rate of 10 mm/h collisional breakup is essential for the shape of the drop size distribution 
    more » « less
  3. null (Ed.)
    The availability of high quality surface observations of precipitation and volume observations by polarimetric operational radars make it possible to constrain, evaluate, and validate numerical models with a wide variety of microphysical schemes. In this article, a novel particle-based Monte-Carlo microphysical model (called McSnow) is used to simulate the outer rain bands of Hurricane Dorian which traversed the densely instrumented precipitation research facility operated by NASA at Wallops Island, Virginia. The rain bands showed steady stratiform vertical profiles with radar signature of dendritic growth layers near −15 °C and peak reflectivity in the bright band of 55 dBZ along with polarimetric signatures of wet snow with sizes inferred to exceed 15 mm. A 2D-video disdrometer measured frequent occurrences of large drops >5 mm and combined with an optical array probe the drop size distribution was well-documented in spite of uncertainty for drops <0.5 mm due to high wind gusts and turbulence. The 1D McSnow control run and four numerical experiments were conducted and compared with observations. One of the main findings is that even at the moderate rain rate of 10 mm/h collisional breakup is essential for the shape of the drop size distribution. 
    more » « less
  4. Abstract

    We present the average distribution of energetic electrons in Jupiter's plasma sheet and outer radiation belt near the magnetic equator during Juno's first 29 orbits. Juno observed a clear decrease of magnetic field amplitude and enhancement of energetic electron fluxes over 0.1–1,000 keV energies when traveling through the plasma sheet. In the radiation belts, Juno observed pancake‐shaped electron distributions with high fluxes at ∼90° pitch angle and whistler‐mode waves. Our survey indicates that the statistical electron flux at each energy tends to increase fromto. The equatorial pitch angle distributions are isotropic or field‐aligned in the plasma sheet and gradually become pancake‐shaped at. The electron phase space density gradients atMeV/G are relatively small atand become positive over, suggesting the dominant role of adiabatic radial transport at highershells, and the possible loss processes at lowershells.

     
    more » « less