skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period: EASTERN AUSTRALIAN DRAINAGE EVOLUTION
PAR ID:
10030753
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
18
Issue:
1
ISSN:
1525-2027
Page Range / eLocation ID:
280 to 305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The width of valleys and channels affects the hydrology, ecology,and geomorphic functionality of drainage networks. In many studies, thewidth of valleys and/or channels (W) is estimated as a power-law function ofthe drainage area (A), W=kcAd. However, in fluvial systemsthat experience drainage reorganization, abrupt changes in drainage areadistribution can result in valley or channel widths that are disproportionalto their drainage areas. Such disproportionality may be more distinguishedin valleys than in channels due to a longer adjustment timescale forvalleys. Therefore, the valley width–area scaling in reorganized drainagesis expected to deviate from that of drainages that did not experiencereorganization. To explore the effect of reorganization on valley width–drainage areascaling, we studied 12 valley sections in the Negev desert, Israel,categorized into undisturbed, beheaded, and reversed valleys. We found thatthe values of the drainage area exponents, d, are lower in the beheadedvalleys relative to undisturbed valleys but remain positive. Reversedvalleys, in contrast, are characterized by negative d exponents, indicatingvalley narrowing with increasing drainage area. In the reversed category, wealso explored the independent effect of channel slope (S) through theequation W=kbAbSc, which yieldednegative and overall similar values for b and c. A detailed study in one reversed valley section shows that the valleynarrows downstream, whereas the channel widens, suggesting that, ashypothesized, the channel width adjusts faster to post-reorganizationdrainage area distribution. The adjusted narrow channel dictates the widthof formative flows in the reversed valley, which contrasts with the meaningfullywider formative flows of the beheaded valley across the divide. Thisdifference results in a step change in the unit stream power between thereversed and beheaded channels, potentially leading to a “width feedback”that promotes ongoing divide migration and reorganization. Our findings demonstrate that valley width–area scaling is a potential toolfor identifying landscapes influenced by drainage reorganization. Accountingfor reorganization-specific scaling can improve estimations of erosion ratedistributions in reorganized landscapes. 
    more » « less
  2. null (Ed.)
    The eastern foothills in the Colombian Eastern Cordillera have been an important oil-producing region since the discovery of the Cupiagua and Cusiana fields. Three organic-rich units are considered to be the main source rocks. The Aptian Fómeque and the Cenomanian-Coniacian Chipaque Formations comprise a siliciclastic to locally carbonate shallow marine shelf succession with type-II kerogen, whereas the Paleocene Los Cuervos Formation consists of marginal marine to nonmarine siliciclastic rocks with type-III kerogen. We modeled the petroleum systems of these three source units to characterize the hydrocarbon generation-accumulation processes within the basin. The structural record of the Eastern Cordillera shows that the most important tectonic event began in early Oligocene with contractional deformation along the Soapaga through Guaicaramo faults during early Miocene, culminating during the Pliocene with the Cusiana and Yopal faults. These variable rates of burial and exhumation resulted in contrasting time-temperature histories for each of the source rocks. The Fómeque Formation reached the oil window during the Paleocene in the south and the Eocene to the north. In contrast, the Chipaque Formation generation started during Early Oligocene in the south and by Late Oligocene to the north. Conversely, maturation for the Los Cuervos Formation was uniform along the foothills, reaching the oil window during Late Oligocene. Charge history modeling suggested that the Albian sandstones reservoirs were filled between Oligocene to Miocene. In contrast, the proven reservoirs in the area (the Upper Cretaceous, Paleocene, and Eocene sandstones) were filled by late Miocene, with a second episode of recent charge in the Eocene reservoirs, and perhaps active, from the Los Cuervos Formation. The results of this work proved that petroleum system modeling is useful not only to characterize generation-migration processes but it also can be used as a prediction tool in structurally complex areas such as the Colombian foothills. 
    more » « less