skip to main content


Title: Thorium distributions in high- and low-dust regions and the significance for iron supply: Marine Thorium and Iron Cycles
NSF-PAR ID:
10030936
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Global Biogeochemical Cycles
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    One of the primary sources of micronutrients to the sea surface in remote ocean regions is the deposition of atmospheric dust. Geographic patterns in biogeochemical processes such as primary production and nitrogen fixation that require micronutrients like iron (Fe) are modulated in part by the spatial distribution of dust supply. Global models of dust deposition rates are poorly calibrated in the open ocean, owing to the difficulty of determining dust fluxes in sparsely sampled regions. We present new estimates of dust and Fe input rates from measurements of dissolved and particulate thorium isotopes230Th and232Th on theFS SonneSO245 section (GEOTRACES process study GPpr09) in the South Pacific. We first discuss high‐resolution upper water column profiles of Th isotopes and the implications for the systematics of dust flux reconstructions from seawater Th measurements. We find dust fluxes in the center of the highly oligotrophic South Pacific Gyre that are the lowest of any mean annual dust input rates measured in the global oceans, but that are 1–2 orders of magnitude higher than those estimated by global dust models. We also determine dust‐borne Fe fluxes and reassess the importance of individual Fe sources to the surface South Pacific Gyre, finding that dust dissolution, not vertical or lateral diffusion, is the primary Fe source. Finally, we combine our estimates of Fe flux in dust with previously published cellular and enzymatic quotas to determine theoretical upper limits on annual average nitrogen fixation rates for a given Fe deposition rate.

     
    more » « less
  2. null (Ed.)
    Speleothems are important timekeepers of Earth’s climate history. A key advantage of speleothems is that they can be dated using U–Th techniques. Mass spectrometric methods for measuring U and Th isotopes has led to vast improvements in measurement precision and a dramatic reduction in sample size. As a result, the timing of past climate, environment, and Earth system changes can be investigated at exceptional temporal precision. In this review, we summarize the principles and history of U–Th dating of speleothems. Finally, we highlight three studies that use U–Th dated speleothems to investigate past changes to the Asian monsoon, constrain the timing of sociopolitical change in ancient civilizations, and develop a speleothem-based calibration of the 14C timescale. 
    more » « less
  3. Electrochemical measurements on tris(cyclopentadienyl)thorium and uranium compounds in the +2, +3, and +4 oxidation states are reported with C 5 H 3 (SiMe 3 ) 2 , C 5 H 4 SiMe 3 , and C 5 Me 4 H ligands. The reduction potentials for both U and Th complexes trend with the electron donating abilities of the cyclopentadienyl ligand. Thorium complexes have more negative An( iii )/An( ii ) reduction potentials than the uranium analogs. Electrochemical measurements of isolated Th( ii ) complexes indicated that the Th( iii )/Th( ii ) couple was surprisingly similar to the Th( iv )/Th( iii ) couple in Cp′′-ligated complexes. This suggested that Th( ii ) complexes could be prepared from Th( iv ) precursors and this was demonstrated synthetically by isolation of directly from UV-visible spectroelectrochemical measurements and reactions of with elemental barium indicated that the thorium system undergoes sequential one electron transformations. 
    more » « less