skip to main content


Title: Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems
NSF-PAR ID:
10031051
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
96
Issue:
2
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019), we focused on the production of 26 Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, 36 Cl and 41 Ca, and the comparison to the ESS data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10–80 M ⊙ ), rotating (with initial velocities of 150 and 300 km s −1 ) and nonrotating single stars at solar metallicity ( Z = 0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes 26 Al, 36 Cl, and 41 Ca, and the stable isotopes 19 F and 22 Ne. In relation to the stable isotopes, we find that only the most massive models, ≥60 and ≥40 M ⊙ give positive 19 F and 22 Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the ESS abundances of 26 Al and 41 Ca can be matched with by models with initial masses ≥40 M ⊙ , while 36 Cl is matched only by our most massive models, ≥60 M ⊙ . 60 Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favored candidate for the origin of the very short-lived 26 Al, 36 Cl, and 41 Ca in the ESS. 
    more » « less
  2. Context. Benchmark stars are crucial as validating standards for current as well as future large stellar surveys of the Milky Way. However, the number of suitable metal-poor benchmark stars is currently limited, owing to the difficulty in determining reliable effective temperatures ( T eff ) in this regime. Aims. We aim to construct a new set of metal-poor benchmark stars based on reliable interferometric effective temperature determinations and a homogeneous analysis. The aim is to reach a precision of 1% in T eff , as is crucial for sufficiently accurate determinations of the full set of fundamental parameters and abundances for the survey sources. Methods. We observed ten late-type metal-poor dwarfs and giants: HD 2665, HD 6755, HD 6833, HD 103095, HD 122563, HD 127243, HD 140283, HD 175305, HD 221170, and HD 224930. Only three of them (HD 103095, HD 122563, and HD 140283) have previously been used as benchmark stars. For the observations, we used the high-angular-resolution optical interferometric instrument PAVO at the CHARA array. We modelled angular diameters using 3D limb-darkening models and determined effective temperatures directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities (log( g )) were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE and FIES spectrographs and estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analysis of unblended lines of neutral and singly ionised iron. Results. We inferred T eff to better than 1% for five of the stars (HD 103095, HD 122563, HD 127243, HD 140283, and HD 224930). The effective temperatures of the other five stars are reliable to between 2 and 3%; the higher uncertainty on the T eff for those stars is mainly due to their having a larger uncertainty in the bolometric fluxes. We also determined log( g ) and [Fe/H] with median uncertainties of 0.03 dex and 0.09 dex, respectively. Conclusions. This study presents reliable and homogeneous fundamental stellar parameters for ten metal-poor stars that can be adopted as a new set of benchmarks. The parameters are based on our consistent approach of combining interferometric observations, 3D limb-darkening-modelling and spectroscopic observations. The next paper in this series will extend this approach to dwarfs and giants in the metal-rich regime. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)