skip to main content


Title: Relationships among climatological vertical moisture structure, column water vapor, and precipitation over the central Amazon in observations and CMIP5 models: Vertical Moisture Profiles in CMIP5
NSF-PAR ID:
10031148
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
4
ISSN:
0094-8276
Page Range / eLocation ID:
1981 to 1989
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic moisture intrusions have played an important role in warming the Arctic over the past few decades. A prior study found that Coupled Model Intercomparison Project Phase 5 (CMIP5) models exhibit large regional biases in the moisture flux across 70°N. It is shown here that the systematic misrepresentation of the moisture flux is related to the models' overprediction of zonal wavenumberk = 2 contribution and underprediction ofk = 1 contribution to the flux. Models with a warmer tropical upper troposphere and El‐Niño‐like tropical surface temperature tend to simulate strongerk = 2 flux, whilek = 1 flux is uncorrelated with tropical upper tropospheric temperature and is associated with La‐Niña‐like surface temperature. The models also overpredict the transient eddy moisture flux while underpredicting the stationary eddy flux. Moreover, future projections in Representative Concentration Pathway 8.5 (RCP8.5) simulations show trends in moisture flux that is consistent with biases in historical simulations, suggesting that these CMIP5 projections reflect the same error(s) that cause the model biases.

     
    more » « less
  2. It is an open question whether an integrated measure of buoyancy can yield a strong relation to precipitation across tropical land and ocean, across the seasonal and diurnal cycles, and for varying degrees of convective organization. Building on previous work, entraining plume buoyancy calculations reveal that differences in convective onset as a function of column water vapor (CWV) over land and ocean, as well as seasonally and diurnally over land, are largely due to variability in the contribution of lower-tropospheric humidity to the total column moisture. Over land, the relationship between deep convection and lower-free-tropospheric moisture is robust across all seasons and times of day, whereas the relation to boundary layer moisture is robust for the daytime only. Using S-band radar, these transition statistics are examined separately for mesoscale and smaller-scale convection. The probability of observing mesoscale convective systems sharply increases as a function of lower-free-tropospheric humidity. The consistency of this with buoyancy-based parameterization is examined for several mixing formulations. Mixing corresponding to deep inflow of environmental air into a plume that grows with height, which incorporates nearly equal weighting of boundary layer and free-tropospheric air, yields buoyancies consistent with the observed onset of deep convection across the seasonal and diurnal cycles in the Amazon. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for smaller-scale convection.

     
    more » « less