Older, sociable capuchins ( Cebus capucinus ) invent more social behaviors, but younger monkeys innovate more in other contexts
- PAR ID:
- 10031151
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 114
- Issue:
- 30
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 7806 to 7813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The application of the latest techniques from artificial intelligence (AI) and machine learning (ML) to improve and automate the decision-making required for solving real-world network security and performance problems (NetAI, for short) has generated great excitement among networking researchers. However, network operators have remained very reluctant when it comes to deploying NetAI-based solutions in their production networks, mainly because the black-box nature of the underlying learning models forces operators to blindly trust these models without having any understanding of how they work, why they work, or when they don't work (and why not). Paraphrasing [1], we argue that to overcome this roadblock and ensure its future success in practice, NetAI has to get past its current stage of explorimentation, or the practice of poking around to see what happens and has to start employing tools of the scientific method.more » « less
-
Synopsis Urbanization promotes the formation of heat islands. For ectothermic animals in cities, the urban heat island effect can increase developmental rate and result in smaller adult body size (i.e., the temperature-size rule). A smaller adult body size could be consequential for invasive urban ectotherms due to potential effects of body size on thermal tolerance, dispersal distance, and fecundity. Here, we explored the effect of urbanization on body size in the spotted lanternfly (Lycorma delicatula), an invasive planthopper (Hemiptera: Fulgoridae) that is rapidly spreading across urban and non-urban settings in the United States. We then evaluated the consequences of spotted lanternfly body size for heat tolerance, a trait with importance for ectotherm survival in urban heat islands. Contrary to our expectations, we found that both male (P = 0.011) and female (P < 0.001) spotted lanternflies were larger in more urbanized areas and that females displayed a positive effect of body size on resistance to hot temperatures (P = 0.018). These results reject plasticity in developmental rate due to the urban heat island effect as an explanation for spotted lanternfly body size and instead lend necessary (but insufficient) support to an adaptive explanation stemming from advantages of larger body size in cities. This study demonstrates a positive effect of urbanization on spotted lanternfly body size, with potential implications for dispersal distance, fecundity, and thermal tolerance in urban areas.more » « less
An official website of the United States government
