skip to main content


Title: Translocation of cell-penetrating peptides into Candida fungal pathogens: CPP Translocation in Candida
NSF-PAR ID:
10031434
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
26
Issue:
9
ISSN:
0961-8368
Page Range / eLocation ID:
1714 to 1725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although the interactions of cell‐penetrating peptides (CPPs) with mammalian cells have been widely studied, much less is known about their interactions with fungal cells. To study how the properties of CPPs affect translocation into fungal cells, we designed variants of the peptides pVEC and SynB with altered levels of charge and hydrophobicity and evaluated the translocation of the variants into the important human fungal pathogenCandida albicans. Charge played a greater role in translocation efficacy of the peptides than hydrophobicity, with a higher net positive charge leading to higher level of translocation intoC. albicansand a higher level of cytosolic localization. Hydrophobicity had little effect on translocation efficacy, but a low level of hydrophobicity did lead to increased vacuolar localization and an energy‐dependent translocation mechanism. Our results suggest that CPPs can be designed for desired levels of cargo delivery into fungal cells and for desired translocation mechanisms.

     
    more » « less
  2. Mitchell, Aaron P. (Ed.)
    ABSTRACT

    The World Health Organization recently published the first list of priority fungal pathogens highlighting multipleCandidaspecies, includingCandida glabrata,Candida albicans, andCandida auris. However, prior studies in these pathogens have been mainly limited to the use of two drug resistance cassettes,NatMXandHphMX, limiting genetic manipulation capabilities in prototrophic laboratory strains and clinical isolates. In this study, we expanded the toolkit forC. glabrata,C. auris, andC. albicansto includeKanMXandBleMXwhen coupled with anin vitroassembled CRISPR-Cas9 ribonucleoprotein (RNP)-based system. Repurposing these drug resistance cassettes forCandida, we were able to make single gene deletions, sequential and simultaneous double gene deletions, epitope tags, and rescue constructs. We applied these drug resistance cassettes to interrogate the ergosterol pathway, a critical pathway for both the azole and polyene antifungal drug classes. Using our approach, we determined for the first time that the deletion ofERG3inC. glabrata,C. auris,andC. albicansprototrophic strains results in azole drug resistance, which further supports the conservation of the Erg3-dependent toxic sterol model. Furthermore, we show that anERG5deletion inC. glabratais azole susceptible at subinhibitory concentrations, suggesting that Erg5 could act as an azole buffer for Erg11. Finally, we identified a synthetic growth defect when bothERG3andERG5are deleted inC. glabrata,which suggests the possibility of another toxic sterol impacting growth. Overall, we have expanded the genetic tools available to interrogate complex pathways in prototrophic strains and clinical isolates.

    IMPORTANCE

    The increasing problem of drug resistance and emerging pathogens is an urgent global health problem that necessitates the development and expansion of tools for studying fungal drug resistance and pathogenesis. Prior studies inCandida glabrata,Candida auris, andCandida albicanshave been mainly limited to the use ofNatMX/SAT1andHphMX/CaHygfor genetic manipulation in prototrophic strains and clinical isolates. In this study, we demonstrated thatNatMX/SAT1, HphMX, KanMX,and/orBleMXdrug resistance cassettes when coupled with a CRISPR-ribonucleoprotein (RNP)-based system can be efficiently utilized for deleting or modifying genes in the ergosterol pathway ofC. glabrata,C. auris, andC. albicans. Moreover, the utility of these tools has provided new insights intoERGgenes and their relationship to azole resistance inCandida. Overall, we have expanded the toolkit forCandidapathogens to increase the versatility of genetically modifying complex pathways involved in drug resistance and pathogenesis.

     
    more » « less
  3. Regulatory networks often converge on very similar cis sequences to drive transcriptional programs due to constraints on what transcription factors are present. To determine the role of constraint loss on cis element evolution, we examined the recent appearance of a thiamine starvation regulated promoter in Candida glabrata . This species lacks the ancestral transcription factor Thi2, but still has the transcription factor Pdc2, which regulates thiamine starvation genes, allowing us to determine the effect of constraint change on a new promoter. We identified two different cis elements in C. glabrata - one present in the evolutionarily recent gene called CgPMU3 , and the other element present in the other thiamine (THI) regulated genes. Reciprocal swaps of the cis elements and incorporation of the S. cerevisiae Thi2 transcription factor-binding site into these promoters demonstrate that the two elements are functionally different from one another. Thus, this loss of an imposed constraint on promoter function has generated a novel cis sequence, suggesting that loss of trans constraints can generate a non-convergent pathway with the same output. 
    more » « less
  4. null (Ed.)
    Despite the cariogenic role of Candida suggested from recent studies, oral Candida acquisition in children at high risk for early childhood caries (ECC) and its association with cariogenic bacteria Streptococcus mutans remain unclear. Although ECC disproportionately afflicts socioeconomically disadvantaged and racial-minority children, microbiological studies focusing on the underserved group are scarce. Our prospective cohort study examined the oral colonization of Candida and S. mutans among 101 infants exclusively from a low-income and racial-minority background in the first year of life. The Cox hazard proportional model was fitted to assess factors associated with the time to event of the emergence of oral Candida and S. mutans. Oral Candida colonization started as early as 1 wk among 13% of infants, increased to 40% by 2 mo, escalated to 48% by 6 mo, and remained the same level until 12 mo. S. mutans in saliva was detected among 20% infants by 12 mo. The emergence of S. mutans by year 1 was 3.5 times higher (hazard ratio [HR], 3.5; confidence interval [CI], 1.1–11.3) in infants who had early colonization of oral Candida compared to those who were free of oral Candida ( P = 0.04) and 3 times higher (HR, 3.0; CI, 1.3–6.9) among infants whose mother had more than 3 decayed teeth ( P = 0.01), even after adjusting demographics, feeding, mother’s education, and employment status. Infants’ salivary S. mutans abundance was positively correlated with infants’ Candida albicans ( P < 0.01) and Candida krusei levels ( P < 0.05). Infants’ oral colonization of C. albicans was positively associated with mother’s oral C. albicans carriage and education ( P < 0.01) but negatively associated with mother’s employment status ( P = 0.01). Future studies are warranted to examine whether oral Candida modulates the oral bacterial community as a whole to become cariogenic during the onset and progression of ECC, which could lead to developing novel ECC predictive and preventive strategies from a fungal perspective. 
    more » « less
  5. Mitchell, Aaron P. (Ed.)
    ABSTRACT TUP1 is a well-characterized repressor of transcription in Saccharomyces cerevisiae and Candida albicans and is observed as a single-copy gene. We observe that most species that experienced a whole-genome duplication outside of the Saccharomyces genus have two copies of TUP1 in the Saccharomycotina yeast clade. We focused on Candida glabrata and demonstrated that the uncharacterized TUP1 homolog, C. glabrata TUP11 ( CgTUP11 ), is most like the S. cerevisiae TUP1 ( ScTUP1 ) gene through phenotypic assays and transcriptome sequencing (RNA-seq). Whereas CgTUP1 plays a role in gene repression, it is much less repressive in standard growth media. Through RNA-seq and reverse transcription-quantitative PCR (RT-qPCR), we observed that genes associated with pathogenicity ( YPS2 , YPS4 , and HBN1 ) are upregulated upon deletion of either paralog, and loss of both paralogs is synergistic. Loss of the corepressor CgCYC8 mimics the loss of both paralogs, but not to the same extent as the Cgtup1 Δ Cgtup11 Δ mutant for these pathogenesis-related genes. In contrast, genes involved in energy metabolism ( CgHXT2 , CgADY2 , and CgFBP1 ) exhibit similar behavior (dependence on both paralogs), but deletion of CgCYC8 is very similar to the Cgtup1 Δ Cgtup11 Δ mutant. Finally, some genes ( CgMFG1 and CgRIE1 ) appear to only be dependent on CgTUP11 and CgCYC8 and not CgTUP1 . These data indicate separable and overlapping roles for the two TUP1 paralogs and that other genes may function as the Cg Cyc8 corepressor. Through a comparison by RNA-seq of Sctup1 Δ, it was found that TUP1 homologs regulate similar genes in the two species. This work highlights that studies focused only on Saccharomyces may miss important biological processes because of paralog loss after genome duplication. IMPORTANCE Due to a whole-genome duplication, many yeast species related to C. glabrata have two copies of the well-characterized TUP1 gene, unlike most Saccharomyces species. This work identifies roles for the paralogs in C. glabrata , highlights the importance of the uncharacterized paralog, called TUP11 , and suggests that the two paralogs have both overlapping and unique functions. The TUP1 paralogs likely influence pathogenicity based on tup mutants upregulating genes that are associated with pathogenicity. 
    more » « less