skip to main content


Title: Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization: EFFECT OF CERAMIC Ca/P RATIO ON CHONDROCYTE-MEDIATED BIOSYNTHESIS AND MINERALIZATION
NSF-PAR ID:
10031496
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
105
Issue:
10
ISSN:
1549-3296
Page Range / eLocation ID:
2694 to 2702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellular strategies and regulation of their crystallization mechanisms are essential to the formation of biominerals, and harnessing these strategies will be important for the future creation of novel non-native biominerals that recapitulate the impressive properties biominerals possess. Harnessing these biosynthetic strategies requires an understanding of the interplay between insoluble organic matrices, mineral precursors, and soluble organic and inorganic additives. Our long-range goal is to use a sea anemone model system (Nematostella vectensis) to examine the role of intrinsically disordered proteins (IDPs) found in native biomineral systems. Here, we study how ambient temperatures (25–37 °C) and seawater solution compositions (varying NaCl and Mg ratios) will affect the infiltration of organic matrices with calcium carbonate mineral precursors generated through a polymer-induced liquid-precursor (PILP) process. Fibrillar collagen matrices were used to assess whether solution conditions were suitable for intrafibrillar mineralization, and SEM with EDS was used to analyze mineral infiltration. Conditions of temperatures 30 °C and above and with low Mg:Ca ratios were determined to be suitable conditions for calcium carbonate infiltration. The information obtained from these observations may be useful for the manipulation and study of cellular secreted IDPs in our quest to create novel biosynthetic materials. 
    more » « less
  2. The development of algal biorefineries is strongly associated with the nutrient management, particularly phosphorus, which is a limited mineral resource. Flash hydrolysis (FH) has been widely applied to a variety of algae species to fractionate its constituents. This chemical-free, subcritical water technique was used to extract more than 80 wt % of phosphorus available in the Scenedesmus sp. as water-soluble phosphates in the aqueous phase (hydrolysate). The phosphate-rich hydrolysate was subjected to the hydrothermal mineralization (HTM) process at 280 °C and 5–90 min of residence time to mineralize phosphates as allotropes of calcium phosphate such as hydroxyapatite (HAp) and whitlockite (WH). In the current study, the effect of reaction time on phosphate mineralization from the hydrolysate as well as the composition, structure and the morphology of the precipitates were studied. Calcium hydroxide and commercial HAp were used as the mineralizer and seeding material, respectively. More than 97 wt % of phosphate and almost 94 wt % of calcium were removed in the first 5 min of the HTM process. Results revealed that as the HTM reaction time increased, calcium phosphate precipitates transformed from WH to carbonated HAp. The integration of the proposed mineralization process with FH can be a cost-effective pathway to produce sustainable, and high value phosphate-based bioproducts from algae. The application of HAp includes biomedical applications such as synthetic bone and implant filling, drug delivery, chromatography, corrosion resistance materials, catalytic activities and fertilizers. 
    more » « less
  3. null (Ed.)
    Abstract Background 2-phenylethanol (2-PE) is a rose-scented flavor and fragrance compound that is used in food, beverages, and personal care products. Compatibility with gasoline also makes it a potential biofuel or fuel additive. A biochemical process converting glucose or other fermentable sugars to 2-PE can potentially provide a more sustainable and economical production route than current methods that use chemical synthesis and/or isolation from plant material. Results We work toward this goal by engineering the Shikimate and Ehrlich pathways in the stress-tolerant yeast Kluyveromyces marxianus . First, we develop a multigene integration tool that uses CRISPR-Cas9 induced breaks on the genome as a selection for the one-step integration of an insert that encodes one, two, or three gene expression cassettes. Integration of a 5-kbp insert containing three overexpression cassettes successfully occurs with an efficiency of 51 ± 9% at the ABZ1 locus and was used to create a library of K. marxianus CBS 6556 strains with refactored Shikimate pathway genes. The 3 3 -factorial library includes all combinations of KmARO4 , KmARO7 , and KmPHA2 , each driven by three different promoters that span a wide expression range. Analysis of the refactored pathway library reveals that high expression of the tyrosine-deregulated KmARO4 K221L and native KmPHA2 , with the medium expression of feedback insensitive KmARO7 G141S , results in the highest increase in 2-PE biosynthesis, producing 684 ± 73 mg/L. Ehrlich pathway engineering by overexpression of KmARO10 and disruption of KmEAT1 further increases 2-PE production to 766 ± 6 mg/L. The best strain achieves 1943 ± 63 mg/L 2-PE after 120 h fed-batch operation in shake flask cultures. Conclusions The CRISPR-mediated multigene integration system expands the genome-editing toolset for K. marxianus, a promising multi-stress tolerant host for the biosynthesis of 2-PE and other aromatic compounds derived from the Shikimate pathway. 
    more » « less