skip to main content


Title: Expanding STEM opportunities through inclusive STEM-focused high schools: EXPANDING STEM OPPORTUNITIES
NSF-PAR ID:
10031527
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Science Education
Volume:
101
Issue:
5
ISSN:
0036-8326
Page Range / eLocation ID:
681 to 715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous research has established that embodied modeling (role-playing agents in a system) can support learning about complexity. Separately, research has demonstrated that increasing the multimodal resources available to students can support sensemaking, particularly for students classified as English Learners. This study bridges these two bodies of research to consider how embodied models can strengthen an interconnected system of multimodal models created by a classroom. We explore how iteratively refining embodied modeling activities strengthened connections to other models, real-world phenomena, and multimodal representations. Through design-based research in a sixth grade classroom studying ecosystems, we refined embodied modeling activities initially conceived as supports for computational thinking and modeling. Across three iterative cycles, we illustrate how the conceptual and epistemic relationship between the computational and embodied model shifted, and we analyze how these shifts shaped opportunities for learning and participation by: (1) recognizing each student’s perspectives as critical for making sense of the model, (2) encouraging students to question and modify the “code” for the model, and (3) leveraging multimodal resources, including graphs, gestures, and student-generated language, for meaning-making. Through these shifts, the embodied model became a full-fledged component of the classroom’s model system and created more equitable opportunities for learning and participation. 
    more » « less
  2. Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future. 
    more » « less
  3. null (Ed.)
  4. Abstract

    This study explores the role of unconventional forms of classroom assessments in expanding minoritized students' opportunities to learn (OTL) in high school physics classrooms. In this research + practice partnership project, high school physics teachers and researchers co‐designed a unit about momentum to expand minoritized students' meaningful OTL. Specifically, the unit was designed to (a) expand what it means to learn and be good at science using unconventional forms of assessment, (b) facilitate students to leverage everyday experiences, concerns, and home languages to do science, and (c) support teachers to facilitate meaningful dialogical interactions. The analysis focused on examining minoritized students' OTLs mediated by intentionally designed, curriculum‐embedded, unconventional forms of assessments. The participants were a total of 76 students in 11th or 12th grade. Data were gathered in the form of student assessment tasks, a science identity survey, and interviews. Data analysis entailed: (a) statistical analysis of student performance measured by conventional and unconventional assessments and (b) qualitative analysis of two Latinx students' experiences with the co‐designed curriculum and assessments. The findings suggest that the use of unconventional forms of curriculum‐embedded assessment can increase minoritized students' OTLifthe assessment facilitates minoritized students to personally and deeply relate themselves to academic tasks.

     
    more » « less