We examine a simple mechanism for the spatiotemporal evolution of transient, slow slip. We consider the problem of slip on a fault that lies within an elastic continuum and whose strength is proportional to sliding rate. This rate dependence may correspond to a viscously deforming shear zone or the linearization of a nonlinear, rate‐dependent fault strength. We examine the response of such a fault to external forcing, such as local increases in shear stress or pore fluid pressure. We show that the slip and slip rate are governed by a type of diffusion equation, the solution of which is found using a Green's function approach. We derive the long‐time, self‐similar asymptotic expansion for slip or slip rate, which depend on both time
Strain release at the trench during shallow slow slip: The example of Nicoya Peninsula, Costa Rica: Slow Slip Ruptures to the Trench
More Like this
-
Abstract t and a similarity coordinateη =x /t , wherex denotes fault position. The similarity coordinate shows a departure from classical diffusion and is owed to the nonlocal nature of elastic interaction among points on an interface between elastic half‐spaces. We demonstrate the solution and asymptotic analysis of several example problems. Following sudden impositions of loading, we show that slip rate ultimately decays as 1/t while spreading proportionally tot , implying both a logarithmic accumulation of displacement and a constant moment rate. We discuss the implication for models of postseismic slip as well as spontaneously emerging slow slip events. -
The 11 March 2011 M 9.0 Tohoku-oki earthquake was one of the largest earthquakes ever recorded and was accompanied by a devastating tsunami. Slip during the earthquake was exceptionally large at shallow depth on the plate boundary fault, which was one of the primary factors that contributed to the extreme tsunami amplitudes that inundated the coast of Japan. International Ocean Discovery Program Expedition 405 aims to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface in the 2011 Tohoku-oki earthquake. Proposed work includes coring and logging operations at two sites in a transect across the trench. The first site, located within the overriding plate, will access the fault zone in the region of large shallow slip, targeting the plate boundary décollement, overlying frontal prism, and subducted units cut by the décollement. The second site, located on the Pacific plate, will access the undisturbed sedimentary and volcanic inputs to the subduction zone. A borehole observatory will be installed into the décollement and surrounding rocks to provide measurements of the temperature in and around the fault over the following several years. Sampling, geophysical logs, and the observatory temperature time series will document the compositional, structural, mechanical, and frictional properties of the rocks in the décollement and adjacent country rock, as well as the hydrogeologic structure and pore fluid pressure of the fault zone and frontal prism—key properties that influence the effective stress to facilitate earthquake slip and potential for large slip. Results from Expedition 405 will address fundamental questions about earthquake slip on subduction zones that may directly inform earthquake and tsunami hazard assessments around the world.more » « less
-
A new component to the drilling operations has been added to the International Ocean Discovery Program (IODP) Expedition 405 schedule following approval of an Ancillary Project Letter (1013-APL). The new operations involve deploying a borehole observatory into Hole C0019D with a temperature sensor string. This hole and observatory infrastructure (i.e., casing) was previously drilled as part of Integrated Ocean Drilling Program Expedition 343/343T in 2012 (Expedition 343/343T Scientists, 2013). Site C0019 is the same site as Site JTCT-01A, described as part of Expedition 405 in Kodaira et al. (2023). Installation of a new instrument string in Hole C0019D at the beginning of Expedition 405 operations will allow the passive observation of anticipated subsurface hydrologic effects caused by nearby drilling (e.g., Kinoshita and Saffer, 2018). Together, the new drilling around Site C0019/JTCT-01A and the resulting observatory temperature observations in Hole C0019D will constitute a series of cross-borehole experiments that enable the determination of large-scale hydrogeologic properties around the plate boundary fault and overlying damage zone. The site priorities and drilling and coring strategy at the primary sites for Expedition 405 (Sites JTCT-01A and JTCT-02A) remain unchanged from the original Expedition 405 Scientific Prospectus (Kodaira et al., 2023).more » « less