skip to main content


Title: Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase
NSF-PAR ID:
10031793
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
25
Issue:
12
ISSN:
0961-8368
Page Range / eLocation ID:
2113 to 2131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Substitution rates in plant mitochondrial genes are extremely low, indicating strong selective pressure as well as efficient repair. Plant mitochondria possess base excision repair pathways; however, many repair pathways such as nucleotide excision repair and mismatch repair appear to be absent. In the absence of these pathways, many DNA lesions must be repaired by a different mechanism. To test the hypothesis that double-strand break repair (DSBR) is that mechanism, we maintained independent self-crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 11 generations to determine the repair outcomes when that pathway is missing. Surprisingly, no single nucleotide polymorphisms (SNPs) were fixed in any line in generation 11. The pattern of heteroplasmic SNPs was also unaltered through 11 generations. When the rate of cytosine deamination was increased by mitochondrial expression of the cytosine deaminase APOBEC3G, there was an increase in heteroplasmic SNPs but only in mature leaves. Clearly, DNA maintenance in reproductive meristem mitochondria is very effective in the absence of UNG while mitochondrial genomes in differentiated tissue are maintained through a different mechanism or not at all. Several genes involved in DSBR are upregulated in the absence of UNG, indicating that double-strand break repair is a general system of repair in plant mitochondria. It is important to note that the developmental stage of tissues is critically important for these types of experiments. 
    more » « less
  2. Abstract Uracil DNA-glycosylase (UNG) is a DNA repair enzyme that removes the highly mutagenic uracil lesion from DNA using a base flipping mechanism. Although this enzyme has evolved to remove uracil from diverse sequence contexts, UNG excision efficiency depends on DNA sequence. To provide the molecular basis for rationalizing UNG substrate preferences, we used time-resolved fluorescence spectroscopy, NMR imino proton exchange measurements, and molecular dynamics simulations to measure UNG specificity constants ( k cat / K M ) and DNA flexibilities for DNA substrates containing central AUT, TUA, AUA, and TUT motifs. Our study shows that UNG efficiency is dictated by the intrinsic deformability around the lesion, establishes a direct relationship between substrate flexibility modes and UNG efficiency, and shows that bases immediately adjacent to the uracil are allosterically coupled and have the greatest impact on substrate flexibility and UNG activity. The finding that substrate flexibility controls UNG efficiency is likely significant for other repair enzymes and has major implications for the understanding of mutation hotspot genesis, molecular evolution, and base editing. 
    more » « less