More Like this
-
Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of submarine melting along iceberg sides on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the flow magnitude and consequent behavior of melt plumes (side-attached or side-detached), with correspondingly different meltwater spreading characteristics. When this velocity dependence is included in melt parameterizations, melt rates estimated for observed icebergs in the attached regime increase, consistent with observed iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord. Further, depending on the regime, iceberg meltwater may either be confined to a surface layer or distributed over the iceberg draft.more » « less
-
The calving of icebergs accounts for a significant fraction of the mass loss from both the Antarctic and Greenland ice sheets. Iceberg melting affects the water properties impacting sea ice formation, local circulation and biological activity. Laboratory experiments have investigated the effects of the Earth’s rotation on iceberg melting and the possible formation of Taylor columns (TCs) underneath icebergs. It is found that at high Rossby number, $Ro$ , when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation. As $Ro$ decreases, the melt rate shows an increasing trend, which is expected to reverse for very low $Ro$ . This behaviour is explained by considering the integrated horizontal velocity at the base of the iceberg. For moderate $Ro$ , a partial TC is formed and its effective blocking accelerates the flow under the remainder of the iceberg, which increases the melt rate since the melting is proportional to the flow velocity. It is expected that for very low $Ro$ the melt rate decreases because, with the expansion of the TC, the region of flow acceleration occurs away from the base of the iceberg. For low free stream velocity the freshwater produced by the ice melting introduces another dynamical effect. It is observed that there is a threshold free stream velocity below which the melt rate is constant. This is explained with the formation of a gravity current at the base of the iceberg that insulates it from the free flow and controls its melting.more » « less
-
Abstract Increasing freshwater input to the subpolar North Atlantic through iceberg melting can influence fjord‐scale to basin‐scale ocean circulation. However, the magnitude, timing, and distribution of this freshwater have been challenging to quantify due to minimal direct observations of subsurface iceberg geometry and melt rates. Here we present novel in situ methods capturing iceberg change at high‐temporal and ‐spatial resolution using four high‐precision GPS units deployed on two large icebergs (>500 m length). In combination with measurements of surface and subsurface geometry, we calculate iceberg melt rates between 0.10 and 0.27 m/d over the 9‐day survey. These melt rates are lower than those proposed in previous studies, likely due to using individual subsurface iceberg geometries in calculations. In combining these new measurements of iceberg geometry and melt rate with the broad spatial coverage of remote sensing, we can better predict the impact of increasing freshwater injection from the Greenland Ice Sheet.
-
Uncertainty about sea-level rise is dominated by uncertainty about iceberg calving, mass loss from glaciers or ice sheets by fracturing. Review of the rapidly growing calving literature leads to a few overarching hypotheses. Almost all calving occurs near or just downglacier of a location where ice flows into an environment more favorable for calving, so the calving rate is controlled primarily by flow to the ice margin rather than by fracturing. Calving can be classified into five regimes, which tend to be persistent, predictable, and insensitive to small perturbations in flow velocity, ice characteristics, or environmental forcing; these regimes can be studied instrumentally. Sufficiently large perturbations may cause sometimes-rapid transitions between regimes or between calving and noncalving behavior, during which fracturing may control the rate of calving. Regime transitions underlie the largest uncertainties in sea-level rise projections, but with few, important exceptions, have not been observed instrumentally. This is especially true of the most important regime transitions for sea-level rise. Process-based models informed by studies of ongoing calving, and assimilation of deep-time paleoclimatic data, may help reduce uncertainties about regime transitions. Failure to include calving accurately in predictive models could lead to large underestimates of warming-induced sea-level rise. ▪ Iceberg calving, the breakage of ice from glaciers and ice sheets, affects sea level and many other environmental issues. ▪ Modern rates of iceberg calving usually are controlled by the rate of ice flow past restraining points, not by the brittle calving processes. ▪ Calving can be classified into five regimes, which are persistent, predictable, and insensitive to small perturbations. ▪ Transitions between calving regimes are especially important and with warming might cause faster sea-level rise than generally projected. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less