skip to main content


Title: Compromise and Synergy in High‐Efficiency Thermoelectric Materials

The past two decades have witnessed the rapid growth of thermoelectric (TE) research. Novel concepts and paradigms are described here that have emerged, targeting superior TE materials and higher TE performance. These superior aspects include band convergence, “phonon‐glass electron‐crystal”, multiscale phonon scattering, resonant states, anharmonicity, etc. Based on these concepts, some new TE materials with distinct features have been identified, including solids with high band degeneracy, with cages in which atoms rattle, with nanostructures at various length scales, etc. In addition, the performance of classical materials has been improved remarkably. However, the figure of meritzTof most TE materials is still lower than 2.0, generally around 1.0, due to interrelated TE properties. In order to realize an “overallzT> 2.0,” it is imperative that the interrelated properties are decoupled more thoroughly, or new degrees of freedom are added to the overall optimization problem. The electrical and thermal transport must be synergistically optimized. Here, a detailed discussion about the commonly adopted strategies to optimize individual TE properties is presented. Then, four main compromises between the TE properties are elaborated from the point of view of the underlying mechanisms and decoupling strategies. Finally, some representative systems of synergistic optimization are also presented, which can serve as references for other TE materials. In conclusion, some of the newest ideas for the future are discussed.

 
more » « less
NSF-PAR ID:
10032971
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
29
Issue:
14
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bismuth telluride is the working material for most Peltier cooling devices and thermoelectric generators. This is because Bi2Te3(or more precisely its alloys with Sb2Te3for p‐type and Bi2Se3for n‐type material) has the highest thermoelectric figure of merit,zT, of any material around room temperature. Since thermoelectric technology will be greatly enhanced by improving Bi2Te3or finding a superior material, this review aims to identify and quantify the key material properties that make Bi2Te3such a good thermoelectric. The largezTcan be traced to the high band degeneracy, low effective mass, high carrier mobility, and relatively low lattice thermal conductivity, which all contribute to its remarkably high thermoelectric quality factor. Using literature data augmented with newer results, these material parameters are quantified, giving clear insight into the tailoring of the electronic band structure of Bi2Te3by alloying, or reducing thermal conductivity by nanostructuring. For example, this analysis clearly shows that the minority carrier excitation across the small bandgap significantly limits the thermoelectric performance of Bi2Te3, even at room temperature, showing that larger bandgap alloys are needed for higher temperature operation. Such effective material parameters can also be used for benchmarking future improvements in Bi2Te3or new replacement materials.

     
    more » « less
  2. null (Ed.)
    Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl 2 Si 2 -type rare-earth phosphides RECuZnP 2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s −1 ) such as RECuZnP 2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP 2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m −1 K −1 ). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance ( zT of 0.5 for ErCuZnP 2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization. 
    more » « less
  3. Abstract

    Two-dimensional (2D) materials have emerged as the ideal candidates for many applications, including nanoelectronics, low-power devices, and sensors. Several 2D materials have been shown to possess large Seebeck coefficients, thus making them suitable for thermoelectric (TE) energy conversion. Whether even higher TE power factors can be discovered among the ≈2000 possible 2D materials (Mounetet al2018Nat. Nanotechnol.13246–52) is an open question. This study aims at formulating selection rules to guide the search for superior 2D TE materials without the need for expensive atomistic simulations. We show that a 2D material having a combination of low effective mass, higher separation in the height of the step-like density of states, and valley splitting, which is the energy difference between the bottom of conduction band and the satellite valley, equal to 5kBTwill lead to a higher TE power factor. Further, we find that inelastic scattering with optical phonons plays a significant role: if inelastic scattering is the dominant mechanism and the energy of the optical phonon equals 5kBT, then the TE power factor is maximized. Starting from a model for carrier transport in MoS2and progressively introducing the aforementioned features results in a two-orders-of-magnitude improvement in the power factor. Compared to the existing selection rules or material descriptors, features identified in this study provide the ability to comprehensively evaluate TE capability of a material and helps in identifying future TE materials suitable for applications in waste-heat scavenging, thermal sensors, and nanoelectronics cooling.

     
    more » « less
  4. Abstract

    Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range.

     
    more » « less
  5. Abstract

    Sb‐doped and GeTe‐alloyed n‐type thermoelectric materials that show an excellent figure of meritZTin the intermediate temperature range (400–800 K) are reported. The synergistic effect of favorable changes to the band structure resulting in high Seebeck coefficient and enhanced phonon scattering by point defects and nanoscale precipitates resulting in reduction of thermal conductivity are demonstrated. The samples can be tuned as single‐phase solid solution (SS) or two‐phase system with nanoscale precipitates (Nano) based on the annealing processes. The GeTe alloying results in band structure modification by widening the bandgap and increasing the density‐of‐states effective mass of PbTe, resulting in significantly enhanced Seebeck coefficients. The nanoscale precipitates can improve the power factor in the low temperature range and further reduce the lattice thermal conductivity (κlat). Specifically, the Seebeck coefficient of Pb0.988Sb0.012Te–13%GeTe–Nano approaches −280 µV K−1at 673 K with a low κlatof 0.56 W m−1K−1at 573 K. Consequently, a peakZTvalue of 1.38 is achieved at 623 K. Moreover, a high averageZTavgvalue of ≈1.04 is obtained in the temperature range from 300 to 773 K for n‐type Pb0.988Sb0.012Te–13%GeTe–Nano.

     
    more » « less