skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Learning Approach to Link Weight Prediction
Deep learning has been successful in various domains including image recognition, speech recognition and natural language processing. However, the research on its application in graph mining is still in an early stage. Here we present Model R, a neural network model created to provide a deep learning approach to link weight prediction problem. This model extracts knowledge of nodes from known links’ weights and uses this knowledge to predict unknown links’ weights. We demonstrate the power of Model R through experiments and compare it with stochastic block model and its derivatives. Model R shows that deep learning can be successfully applied to link weight prediction and it outperforms stochastic block model and its derivatives by up to 73% in terms of prediction accuracy. We anticipate this new approach to provide effective solutions to more graph mining tasks.  more » « less
Award ID(s):
1646640
PAR ID:
10033443
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Joint Conference on Neural Networks (IJCNN)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Link prediction in artificial intelligence is used to identify missing links or derive future relationships that can occur in complex networks. A link prediction model was developed using the complex heterogeneous biomedical knowledge graph, SemNet, to predict missing links in biomedical literature for drug discovery. A web application visualized knowledge graph embeddings and link prediction results using TransE, CompleX, and RotatE based methods. The link prediction model achieved up to 0.44 hits@10 on the entity prediction tasks. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, served as a case study to demonstrate the efficacy of link prediction modeling for drug discovery. The link prediction algorithm guided identification and ranking of repurposed drug candidates for SARS-CoV-2 primarily by text mining biomedical literature from previous coronaviruses, including SARS and middle east respiratory syndrome (MERS). Repurposed drugs included potential primary SARS-CoV-2 treatment, adjunctive therapies, or therapeutics to treat side effects. The link prediction accuracy for nodes ranked highly for SARS coronavirus was 0.875 as calculated by human in the loop validation on existing COVID-19 specific data sets. Drug classes predicted as highly ranked include anti-inflammatory, nucleoside analogs, protease inhibitors, antimalarials, envelope proteins, and glycoproteins. Examples of highly ranked predicted links to SARS-CoV-2: human leukocyte interferon, recombinant interferon-gamma, cyclosporine, antiviral therapy, zidovudine, chloroquine, vaccination, methotrexate, artemisinin, alkaloids, glycyrrhizic acid, quinine, flavonoids, amprenavir, suramin, complement system proteins, fluoroquinolones, bone marrow transplantation, albuterol, ciprofloxacin, quinolone antibacterial agents, and hydroxymethylglutaryl-CoA reductase inhibitors. Approximately 40% of identified drugs were not previously connected to SARS, such as edetic acid or biotin. In summary, link prediction can effectively suggest repurposed drugs for emergent diseases. 
    more » « less
  2. Richards, Blake A (Ed.)
    While current deep learning algorithms have been successful for a wide variety of artificial intelligence (AI) tasks, including those involving structured image data, they present deep neurophysiological conceptual issues due to their reliance on the gradients that are computed by backpropagation of errors (backprop). Gradients are required to obtain synaptic weight adjustments but require knowledge of feed-forward activities in order to conduct backward propagation, a biologically implausible process. This is known as the “weight transport problem”. Therefore, in this work, we present a more biologically plausible approach towards solving the weight transport problem for image data. This approach, which we name the error-kernel driven activation alignment (EKDAA) algorithm, accomplishes through the introduction of locally derived error transmission kernels and error maps. Like standard deep learning networks, EKDAA performs the standard forward process via weights and activation functions; however, its backward error computation involves adaptive error kernels that propagate local error signals through the network. The efficacy of EKDAA is demonstrated by performing visual-recognition tasks on the Fashion MNIST, CIFAR-10 and SVHN benchmarks, along with demonstrating its ability to extract visual features from natural color images. Furthermore, in order to demonstrate its non-reliance on gradient computations, results are presented for an EKDAA-trained CNN that employs a non-differentiable activation function. 
    more » « less
  3. Existing causal models for link prediction assume an underlying set of inherent node factors—an innate characteristic defined at the node’s birth—that governs the causal evolution of links in the graph. In some causal tasks, however, link formation ispath-dependent: the outcome of link interventions depends on existing links. Unfortunately, these existing causal methods are not designed for path-dependent link formation, as the cascading functional dependencies between links (arising frompath dependence) are either unidentifiable or require an impractical number of control variables. To overcome this, we develop the first causal model capable of dealing with path dependencies in link prediction. In this work, we introduce the concept of causal lifting, an invariance in causal models of independent interest that, on graphs, allows the identification of causal link prediction queries using limited interventional data. Further, we show how structural pairwise embeddings exhibit lower bias and correctly represent the task’s causal structure, as opposed to existing node embeddings, e.g. graph neural network node embeddings and matrix factorization. Finally, we validate our theoretical findings on three scenarios for causal link prediction tasks: knowledge base completion, covariance matrix estimation and consumer-product recommendations. 
    more » « less
  4. Link prediction has been widely applied in social network analysis. Despite its importance, link prediction algorithms can be biased by disfavoring the links between individuals in particular demographic groups. In this paper, we study one particular type of bias, namely, the bias in predicting inter-group links (i.e., links across different demographic groups). First, we formalize the definition of bias in link prediction by providing quantitative measurements of accuracy disparity, which measures the difference in prediction accuracy of inter-group and intra-group links. Second, we unveil the existence of bias in six existing state-of-the-art link prediction algorithms through extensive empirical studies over real world datasets. Third, we identify the imbalanced density across intra-group and inter-group links in training graphs as one of the underlying causes of bias in link prediction. Based on the identified cause, fourth, we design a pre-processing bias mitigation method named FairLP to modify the training graph, aiming to balance the distribution of intra-group and inter-group links while preserving the network characteristics of the graph. FairLP is model-agnostic and thus is compatible with any existing link prediction algorithm. Our experimental results on real-world social network graphs demonstrate that FairLP achieves better trade-off between fairness and prediction accuracy than the existing fairness-enhancing link prediction methods. 
    more » « less
  5. Chaudhuri, Kamalika and (Ed.)
    Interpretable graph learning is in need as many scientific applications depend on learning models to collect insights from graph-structured data. Previous works mostly focused on using post-hoc approaches to interpret pre-trained models (graph neural networks in particular). They argue against inherently interpretable models because the good interpretability of these models is often at the cost of their prediction accuracy. However, those post-hoc methods often fail to provide stable interpretation and may extract features that are spuriously correlated with the task. In this work, we address these issues by proposing Graph Stochastic Attention (GSAT). Derived from the information bottleneck principle, GSAT injects stochasticity to the attention weights to block the information from task-irrelevant graph components while learning stochasticity-reduced attention to select task-relevant subgraphs for interpretation. The selected subgraphs provably do not contain patterns that are spuriously correlated with the task under some assumptions. Extensive experiments on eight datasets show that GSAT outperforms the state-of-the-art methods by up to 20% in interpretation AUC and 5% in prediction accuracy. Our code is available at https://github.com/Graph-COM/GSAT. https://arxiv.org/abs/2201.12987 https://proceedings.mlr.press/v162/miao22a.html 
    more » « less