skip to main content

Title: Ion velocity distributions in dipolarization events: Beams in the vicinity of the plasma sheet boundary: PSBL ION VELOCITY DISTRIBUTIONS
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Page Range / eLocation ID:
8026 to 8036
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this work, we investigate how the complex structure found in solar wind proton velocity distribution functions (VDFs), rather than the commonly assumed two-component bi-Maxwellian structure, affects the onset and evolution of parallel-propagating microinstabilities. We use theArbitrary Linear Plasma Solver, a numerical dispersion solver, to find the real frequencies and growth/damping rates of the Alfvén modes calculated for proton VDFs extracted from Wind spacecraft observations of the solar wind. We compare this wave behavior to that obtained by applying the same procedure to core-and-beam bi-Maxwellian fits of the Wind proton VDFs. We find several significant differences in the plasma waves obtained for the extracted data and bi-Maxwellian fits, including a strong dependence of the growth/damping rate on the shape of the VDF. By applying the quasilinear diffusion operator to these VDFs, we pinpoint resonantly interacting regions in velocity space where differences in VDF structure significantly affect the wave growth and damping rates. This demonstration of the sensitive dependence of Alfvén mode behavior on VDF structure may explain why the Alfvén ion-cyclotron instability thresholds predicted by linear theory for bi-Maxwellian models of solar wind proton background VDFs do not entirely constrain spacecraft observations of solar wind proton VDFs, such as those made by the Wind spacecraft.

    more » « less
  2. This study presents velocity-resolved desorption experiments of recombinatively-desorbing oxygen from Ag (111). We combine molecular beam techniques, ion imaging, and temperature-programmed desorption to obtain translational energy distributions of desorbing O 2 . Molecular beams of NO 2 are used to prepare a p (4 × 4)-O adlayer on the silver crystal. The translational energy distributions of O 2 are shifted towards hyperthermal energies indicating desorption from an intermediate activated molecular chemisorption state. 
    more » « less
  3. Abstract

    Dynamic remodeling of the actin cytoskeleton is essential for many cellular processes. Tracking the movement of individual actin filaments can in principle shed light on how this complex behavior arises at the molecular level. However, the information that can be extracted from these measurements is often limited by low signal-to-noise ratios. We developed a Bayesian statistical approach to estimate true, underlying velocity distributions from the tracks of individual actin-associated fluorophores with quantified localization uncertainties. We found that the motion of filamentous (F)-actin in fibroblasts and endothelial cells was better described by a statistical jump process than by models in which filaments undergo continuous, diffusive movement. In particular, a model with exponentially distributed jump length- and time-scales recapitulated actin filament velocity distributions measured for the cell cortex, integrin-based adhesions, and stress fibers, suggesting that a common physical model can potentially describe actin filament dynamics in a variety of cellular contexts.

    more » « less