skip to main content


Title: Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980: The 1980-2010 Trends in Arctic Aerosol RF
NSF-PAR ID:
10034017
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Even though the Arctic is remote, aerosol properties observed there arestrongly influenced by anthropogenic emissions from outside the Arctic. Thisis particularly true for the so-called Arctic haze season (January throughApril). In summer (June through September), when atmospheric transportpatterns change, and precipitation is more frequent, local Arctic sources,i.e., natural sources of aerosols and precursors, play an important role.Over the last few decades, significant reductions in anthropogenic emissionshave taken place. At the same time a large body of literature shows evidencethat the Arctic is undergoing fundamental environmental changes due toclimate forcing, leading to enhanced emissions by natural processes that mayimpact aerosol properties. In this study, we analyze 9 aerosol chemical species and 4 particleoptical properties from 10 Arctic observatories (Alert, Kevo, Pallas,Summit, Thule, Tiksi, Barrow/Utqiaġvik, Villum, and Gruvebadet and ZeppelinObservatory – both at Ny-Ålesund Research Station) to understand changesin anthropogenic and natural aerosol contributions. Variables includeequivalent black carbon, particulate sulfate, nitrate, ammonium,methanesulfonic acid, sodium, iron, calcium and potassium, as well asscattering and absorption coefficients, single scattering albedo andscattering Ångström exponent. First, annual cycles are investigated, which despite anthropogenic emissionreductions still show the Arctic haze phenomenon. Second, long-term trendsare studied using the Mann–Kendall Theil–Sen slope method. We find in total41 significant trends over full station records, i.e., spanning more than adecade, compared to 26 significant decadal trends. The majority ofsignificantly declining trends is from anthropogenic tracers and occurredduring the haze period, driven by emission changes between 1990 and 2000.For the summer period, no uniform picture of trends has emerged. Twenty-sixpercent of trends, i.e., 19 out of 73, are significant, and of those 5 arepositive and 14 are negative. Negative trends include not only anthropogenictracers such as equivalent black carbon at Kevo, but also natural indicatorssuch as methanesulfonic acid and non-sea-salt calcium at Alert. Positivetrends are observed for sulfate at Gruvebadet. No clear evidence of a significant change in the natural aerosolcontribution can be observed yet. However, testing the sensitivity of theMann–Kendall Theil–Sen method, we find that monotonic changes of around 5 % yr−1 in an aerosol property are needed to detect a significanttrend within one decade. This highlights that long-term efforts well beyonda decade are needed to capture smaller changes. It is particularly importantto understand the ongoing natural changes in the Arctic, where interannualvariability can be high, such as with forest fire emissions and theirinfluence on the aerosol population. To investigate the climate-change-induced influence on the aerosolpopulation and the resulting climate feedback, long-term observations oftracers more specific to natural sources are needed, as well as of particlemicrophysical properties such as size distributions, which can be used toidentify changes in particle populations which are not well captured bymass-oriented methods such as bulk chemical composition. 
    more » « less
  2. Abstract

    The iron cycle is a key component of the Earth system. Yet how variable the atmospheric flux of soluble (bioaccessible) iron into oceans is, and how this variability is modulated by human activity and a changing climate, is not well known. For the first time, we characterize Satellite Era (1980 to 2015) daily‐to‐interannual modeled soluble iron emission and deposition variability from both pyrogenic (fires and anthropogenic combustion) and dust sources. Statistically significant emission trends exist: dust iron decreases, fire iron slightly increases, and anthropogenic iron increases. A strong temporal variability in deposition to ocean basins is found, and, for most regions, dust iron dominates the absolute deposition magnitude, fire iron is an important contributor to temporal variability, and anthropogenic iron imposes a significant increasing trend. Quantifying soluble iron daily‐to‐interannual deposition variability from all major iron sources, not only dust, will advance quantification of changes in marine biogeochemistry in response to the continuing human perturbation to the Earth System.

     
    more » « less
  3. Abstract

    We investigate the linear trends in meridional atmospheric heat transport (AHT) since 1980 in atmospheric reanalysis datasets, coupled climate models, and atmosphere-only climate models forced with historical sea surface temperatures. Trends in AHT are decomposed into contributions from three components of circulation: (i) transient eddies, (ii) stationary eddies, and (iii) the mean meridional circulation. All reanalyses and models agree on the pattern of AHT trends in the Southern Ocean, providing confidence in the trends in this region. There are robust increases in transient-eddy AHT magnitude in the Southern Ocean in the reanalyses, which are well replicated by the atmosphere-only models, while coupled models show smaller magnitude trends. This suggests that the pattern of sea surface temperature trends contributes to the transient-eddy AHT trends in this region. In the tropics, we find large differences between mean-meridional circulation AHT trends in models and the reanalyses, which we connect to discrepancies in tropical precipitation trends. In the Northern Hemisphere, we find less evidence of large-scale trends and more uncertainty, but note several regions with mismatches between models and the reanalyses that have dynamical explanations. Throughout this work we find strong compensation between the different components of AHT, most notably in the Southern Ocean where transient-eddy AHT trends are well compensated by trends in the mean-meridional circulation AHT, resulting in relatively small total AHT trends. This highlights the importance of considering AHT changes holistically, rather than each AHT component individually.

     
    more » « less
  4. Abstract. Anthropogenic aerosols (AAs) induce global and regionaltropospheric circulation adjustments due to the radiative energyperturbations. The overall cooling effects of AA, which mask a portion ofglobal warming, have been the subject of many studies but still have largeuncertainty. The interhemispheric contrast in AA forcing has also beendemonstrated to induce a major shift in atmospheric circulation. However,the zonal redistribution of AA emissions since start of the 20th century, with anotable decline in the Western Hemisphere (North America and Europe) and acontinuous increase in the Eastern Hemisphere (South Asia and East Asia),has received less attention. Here we utilize four sets of single-model initial-condition large-ensemblesimulations with various combinations of external forcings to quantify theradiative and circulation responses due to the spatial redistribution of AAforcing during 1980–2020. In particular, we focus on the distinct climateresponses due to fossil-fuel-related (FF) aerosols emitted from the Western Hemisphere (WH) versus the Eastern Hemisphere (EH). The zonal (west to east) redistribution of FF aerosol emission since the1980s leads to a weakening negative radiative forcing over the WHmid-to-high latitudes and an enhancing negative radiative forcing over theEH at lower latitudes. Overall, the FF aerosol leads to a northward shift of the Hadley cell and an equatorward shift of the Northern Hemisphere (NH) jet stream. Here, two sets of regional FF simulations (Fix_EastFF1920and Fix_WestFF1920) are performed to separate the roles ofzonally asymmetric aerosol forcings. We find that the WH aerosol forcing,located in the extratropics, dominates the northward shift of the Hadley cell by inducing an interhemispheric imbalance in radiative forcing. On the other hand, the EH aerosol forcing, located closer to the tropics, dominates the equatorward shift of the NH jet stream. The consistent relationship between the jet stream shift and the top-of-atmosphere net solar flux (FSNTOA) gradient suggests that the latter serves as a rule-of-thumb guidance for the expected shift of the NH jet stream. The surface effect of EH aerosol forcing (mainly from low- to midlatitudes)is confined more locally and only induces weak warming over the northeastern Pacific and North Atlantic. In contrast, the WH aerosol reduction leads to a large-scale warming over NH mid-to-high latitudes that largely offsets the cooling over the northeastern Pacific due to EH aerosols. The simulated competing roles of regional aerosol forcings in drivingatmospheric circulation and surface temperature responses during the recentdecades highlight the importance of considering zonally asymmetric forcings(west to east) and also their meridional locations within the NH (tropicalvs. extratropical). 
    more » « less
  5. This repository contains the 12 sets of Arctic atmospheric river labels based on the 3-hourly ERA5 and MERRA-2 data for 1980–2019 and the high-resolution version of figures in Zhang, Tung, & Cleveland (ERCL 2023, https://doi.org/10.1088/2752-5295/acdf0f). 
    more » « less