skip to main content


Title: Role of IMF B y in the prompt electric field disturbances over equatorial ionosphere during a space weather event: IMF B y AND PROMPT PENETRATION E-FIELD
NSF-PAR ID:
10034094
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract

    Global simulations predict that the low‐latitude mantle may be an important pathway for the solar wind entry into the tail magnetosphere close to the current sheet when interplanetary magnetic field (IMF)Bydominates over IMFBz. To evaluate this entry mechanism in the near‐Earth tail (X ∼ −10–−20RE), we investigate the predictions from 3D global hybrid simulations as well as in situ observations by magnetospheric multiscale (MMS) spacecraft. The simulations predict that the low‐latitude mantle plasma can appear in the near‐Earth tail lobe extending inward approximately 5REfrom the flank magnetopause. The low‐latitude mantle plasma appears in the dawnside northern lobe and duskside southern lobe during positive IMFBy, while the opposite asymmetry is seen during negative IMFBy. After a change in the IMFBydirection arriving at the bow shock nose, it takes another ∼15–30 min for the asymmetry to completely reverse to the opposite sense in the near‐Earth tail. We present six MMS events in the tail lobe showing that the existence and absence of the low‐latitude mantle plasma is consistent with the predicted asymmetries. Statistical analysis of 5 years of MMS observations shows that the dependencies of the magnitudes of the lobe densities and tailward field‐aligned flow speeds on the IMFBydirections are consistent with the predicted contributions from the low‐latitude mantle plasma in the expected lobe regions.

     
    more » « less
  3. Abstract

    There is still an inadequate understanding of how the interplanetary magnetic field (IMF) east‐west component (By) affects thermospheric composition, and other ionospheric and thermospheric fields in a systematic way. Utilizing the state‐of‐art first‐principles Coupled Magnetosphere Ionosphere Thermosphere (CMIT) modeling and TIMED/Global Ultraviolet Imager (GUVI)‐observed ΣO/N2covering an entire solar cycle (year 2002–2016), as well as a neutral parcel trajectory tracing technique, we emphasize that not only the direction ofBy, but also its strength relative to the IMF north‐south component (Bz) that has important effects on high latitude convection, Joule heating, electron density, neutral winds, and neutral composition patterns in the upper thermosphere. The Northern Hemisphere convection pattern becomes more twisted for positiveBycases than negative cases: the dusk cell becomes more rounded compared with the dawn cell. Consequently, equatorward neutral winds are stronger during postmidnight hours in negativeBycases than in positiveBycases, creating a favorable condition for neutral composition disturbances (characterized by low ΣO/N2) to expand to lower latitudes. This may lead to a more elongated ΣO/N2depletion area along the morning‐premidnight direction for negativeByconditions compared with the positiveByconditions. Backward neutral parcel trajectories indicate that a lower ΣO/N2parcel in negativeBycases comes from lower altitudes, as compared with that for positiveBycases, leading to larger enhancements of N2in the former case.

     
    more » « less
  4. Abstract

    Lobe reconnection is usually thought to play an important role in geospace dynamics only when the Interplanetary Magnetic Field (IMF) is mainly northward. This is because the most common and unambiguous signature of lobe reconnection is the strong sunward convection in the polar cap ionosphere observed during these conditions. During more typical conditions, when the IMF is mainly oriented in a dawn‐dusk direction, plasma flows initiated by dayside and lobe reconnection both map to high‐latitude ionospheric locations in close proximity to each other on the dayside. This makes the distinction of the source of the observed dayside polar cap convection ambiguous, as the flow magnitude and direction are similar from the two topologically different source regions. We here overcome this challenge by normalizing the ionospheric convection observed by the Super Dual Aurora Radar Network (SuperDARN) to the polar cap boundary, inferred from simultaneous observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This new method enable us to separate and quantify the relative contribution of both lobe reconnection and dayside/nightside (Dungey cycle) reconnection during periods of dominating IMFBy. Our main findings are twofold. First, the lobe reconnection rate can typically account for 20% of the Dungey cycle flux transport during local summer when IMFByis dominating and IMFBz ≥ 0. Second, the dayside convection relative to the open/closed boundary is vastly different in local summer versus local winter, as defined by the dipole tilt angle.

     
    more » « less