skip to main content


Title: Atypical pupillary light reflex in 2-6-year-old children with autism spectrum disorders: Pupillary light reflex in 2-6 years old
NSF-PAR ID:
10034356
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Autism Research
Volume:
10
Issue:
5
ISSN:
1939-3792
Page Range / eLocation ID:
829 to 838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Pupillary light reflex (PLR) is an involuntary response where the pupil size changes with luminance. Studies have shown that PLR response was altered in children with autism spectrum disorders (ASDs) and other neurological disorders. However, PLR in infants and toddlers is still understudied. We conducted a longitudinal study to investigate PLR in children of 6–24 months using a remote pupillography device. The participants are categorized into two groups. The ‘high risk’ (HR) group includes children with one or more siblings diagnosed with ASDs; whereas the ‘low risk’ (LR) group includes children without an ASD diagnosis in the family history. The participants’ PLR was measured every six months until the age of 24 months. The results indicated a significant age effect in multiple PLR parameters including resting pupil radius, minimal pupil radius, relative constriction, latency, and response time. In addition, the HR group had a significantly larger resting and minimal pupil size than the LR group. The experimental data acquired in this study revealed not only general age-related PLR changes in infants and toddlers, but also different PLRs in children with a higher risk of ASD.

     
    more » « less
  2. Abstract

    Humans detect faces efficiently from a young age. Face detection is critical for infants to identify and learn from relevant social stimuli in their environments. Faces with eye contact are an especially salient stimulus, and attention to the eyes in infancy is linked to the emergence of later sociality. Despite the importance of both of these early social skills—attending to faces and attending to the eyes—surprisingly little is known about how they interact. We used eye tracking to explore whether eye contact influences infants' face detection. Longitudinally, we examined 2‐, 4‐, and 6‐month‐olds' (N = 65) visual scanning of complex image arrays with human and animal faces varying in eye contact and head orientation. Across all ages, infants displayed superior detection of faces with eye contact; however, this effect varied as a function of species and head orientation. Infants were more attentive to human than animal faces and were more sensitive to eye and head orientation for human faces compared to animal faces. Unexpectedly, human faces with both averted heads and eyes received the most attention. This pattern may reflect the early emergence of gaze following—the ability to look where another individual looks—which begins to develop around this age. Infants may be especially interested in averted gaze faces, providing early scaffolding for joint attention. This study represents the first investigation to document infants' attention patterns to faces systematically varying in their attentional states. Together, these findings suggest that infants develop early, specialized functional conspecific face detection.

     
    more » « less
  3. null (Ed.)
    Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formation of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission. 
    more » « less