Real-time, low-cost, and wireless mechanical vibration monitoring is necessary for industrial applications to track the operation status of equipment, environmental applications to proactively predict natural disasters, as well as day-to-day applications such as vital sign monitoring. Despite this urgent need, existing solutions, such as laser vibrometers, commercial Wi-Fi devices, and cameras, lack wide practical deployment due to their limited sensitivity and functionality. Here we proposed a fully passive, metamaterial-based vibration processing device, fabricated prototypes working at different frequencies ranging from 5 Hz to 285 Hz, and verified that the device can improve the sensitivity of wireless vibration measurement methods by more than ten times when attached to vibrating surfaces. Additionally, the device realizes an analog real-time vibration filtering/labeling effect, and the device also provides a platform for surface editing, which adds more functionalities to the current non-contact sensing systems. Finally, the working frequency of the device is widely adjustable over orders of magnitudes, broadening its applicability to different applications, such as structural health diagnosis, disaster warning, and vital signal monitoring.
Metamaterial Based Passive Wireless Temperature Sensor : Metamaterial Based Passive Wireless Temperature Sensor
- NSF-PAR ID:
- 10034363
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1438-1656
- Page Range / eLocation ID:
- 1600741
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
This paper presents a wireless temperature sensor that uses a GaAs solar cell as a wireless transmitter of information. Transmission of information with a solar cell is possible by modulating the luminescent radiation emitted by the solar cell. This technique, dubbed Optical Frequency Identification or OFID, was recently reported in the literature and in this work is used to transmit temperature measurements wirelessly. The hardware design of an OFID temperature sensor tag and its corresponding reader is described. A prototype of the proposed sensor was built as a proof of concept. Experimental results demonstrate wireless data transmission at a distance of 1 m distance and at a bit rate of 1200 bps. The wireless temperature sensor has a maximum error of 0.39°C (after calibration) with respect to a high-precision temperature meter.more » « less