skip to main content


Title: Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803: New Sensors for Synechocystis ’ Toolbox
NSF-PAR ID:
10034482
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
114
Issue:
7
ISSN:
0006-3592
Page Range / eLocation ID:
1561 to 1569
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cyanobacteria are foundational drivers of global nutrient cycling, with high intracellular iron (Fe) requirements. Fe is found at extremely low concentrations in aquatic systems, however, and the ways in which cyanobacteria take up Fe are largely unknown, especially the initial step in Fe transport across the outer membrane. Here, we identified one TonB protein and four TonB-dependent transporters (TBDTs) of the energy-requiring Fe acquisition system and six porins of the passive diffusion Fe uptake system in the model cyanobacterium Synechocystis sp. strain PCC 6803. The results experimentally demonstrated that TBDTs not only participated in organic ferri-siderophore uptake but also in inorganic free Fe (Fe′) acquisition. 55 Fe uptake rate measurements showed that a TBDT quadruple mutant acquired Fe at a lower rate than the wild type and lost nearly all ability to take up ferri-siderophores, indicating that TBDTs are critical for siderophore uptake. However, the mutant retained the ability to take up Fe′ at 42% of the wild-type Fe′ uptake rate, suggesting additional pathways of Fe′ acquisition besides TBDTs, likely by porins. Mutations in four of the six porin-encoding genes produced a low-Fe-sensitive phenotype, while a mutation in all six genes was lethal to cell survival. These diverse outer membrane Fe uptake pathways reflect cyanobacterial evolution and adaptation under a range of Fe regimes across aquatic systems. IMPORTANCE Cyanobacteria are globally important primary producers and contribute about 25% of global CO 2 fixation. Low Fe bioavailability in surface waters is thought to limit the primary productivity in as much as 40% of the global ocean. The Fe acquisition strategies that cyanobacteria have evolved to overcome Fe deficiency remain poorly characterized. We experimentally characterized the key players and the cooperative work mode of two Fe uptake pathways, including an active uptake pathway and a passive diffusion pathway in the model cyanobacterium Synechocystis sp. PCC 6803. Our finding proved that cyanobacteria use ferri-siderophore transporters to take up Fe′, and they shed light on the adaptive mechanisms of cyanobacteria to cope with widespread Fe deficiency across aquatic environments. 
    more » « less
  2. Abstract

    In photobioreactors and natural systems, microalgae are subjected to rapidly changing light intensities (LI) due to light attenuation and mixing. A controlled way to study the effect of rapidly changing LI is to subject cultures to flashing light. In this study, series of flashing‐light experiments were conducted usingSynechocystissp. PCC6803 with constant overall average LI of approximately 84 μmol·m−2·s−1and relative times in the light and dark varied. The results were also compared with simulated results using a mathematical model including an absorbed pool of light energy, photoacclimation, and photoinhibition. With equal time in light and dark, the specific growth rate (μ) systematically decreased with increasing light duration, and µ decreased further when the ratio of light to dark was decreased. The model captured both trends with the mechanistic explanation that when the light duration was very short the changes in the pool of absorbed LI were smoothed out across the light and dark periods, whereas longer durations caused the biomass to experience discrete light and dark conditions that lead to reduced light absorption, more energy loss to nonphotochemical quenching, and more photodamage. These growth effects were accentuated as the ratio of light to dark decreased.

     
    more » « less