skip to main content


Title: Adaptive model predictive control of nonlinear systems with state‐dependent uncertainties
Summary

This paper studies adaptive model predictive control (AMPC) of systems with time‐varying and potentially state‐dependent uncertainties. We propose an estimation and prediction architecture within the min‐max MPC framework. An adaptive estimator is presented to estimate the set‐valued measures of the uncertainty using piecewise constant adaptive law, which can be arbitrarily accurate if the sampling period in adaptation is small enough. Based on such measures, a prediction scheme is provided that predicts the time‐varying feasible set of the uncertainty over the prediction horizon. We show that if the uncertainty and its first derivatives are locally Lipschitz, the stability of the system with AMPC can always be guaranteed under the standard assumptions for traditional min‐max MPC approaches, while the AMPC algorithm enhances the control performance by efficiently reducing the size of the feasible set of the uncertainty in min‐max MPC setting. Copyright © 2017 John Wiley & Sons, Ltd.

 
more » « less
NSF-PAR ID:
10034678
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Robust and Nonlinear Control
Volume:
27
Issue:
17
ISSN:
1049-8923
Page Range / eLocation ID:
p. 4138-4153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Scenario‐based model predictive control (MPC) methods can mitigate the conservativeness inherent to open‐loop robust MPC. Yet, the scenarios are often generated offline based on worst‐case uncertainty descriptions obtaineda priori, which can in turn limit the improvements in the robust control performance. To this end, this paper presents a learning‐based, adaptive‐scenario‐tree model predictive control approach for uncertain nonlinear systems with time‐varying and/or hard‐to‐model dynamics. Bayesian neural networks (BNNs) are used to learn a state‐ and input‐dependent description of model uncertainty, namely the mismatch between a nominal (physics‐based or data‐driven) model of a system and its actual dynamics. We first present a new approach for training robust BNNs (RBNNs) using probabilistic Lipschitz bounds to provide a less conservative uncertainty quantification. Then, we present an approach to evaluate the credible intervals of RBNN predictions and determine the number of samples required for estimating the credible intervals given a credible level. The performance of RBNNs is evaluated with respect to that of standard BNNs and Gaussian process (GP) as a basis of comparison. The RBNN description of plant‐model mismatch with verified accurate credible intervals is employed to generate adaptive scenarios online for scenario‐based MPC (sMPC). The proposed sMPC approach with adaptive scenario tree can improve the robust control performance with respect to sMPC with a fixed, worst‐case scenario tree and with respect to an adaptive‐scenario‐based MPC (asMPC) using GP regression on a cold atmospheric plasma system. Furthermore, closed‐loop simulation results illustrate that robust model uncertainty learning via RBNNs can enhance the probability of constraint satisfaction of asMPC.

     
    more » « less
  2. Osteoarthritis of the knee is increasingly prevalent as our population ages, representing an increasing financial burden, and severely impacting quality of life. The invasiveness of in vivo procedures and the high cost of cadaveric studies has left computational tools uniquely suited to study knee biomechanics. Developments in deep learning have great potential for efficiently generating large-scale datasets to enable researchers to perform population-sized investigations, but the time and effort associated with producing robust hexahedral meshes has been a limiting factor in expanding finite element studies to encompass a population. Here we developed a fully automated pipeline capable of taking magnetic resonance knee images and producing a working finite element simulation. We trained an encoder-decoder convolutional neural network to perform semantic image segmentation on the Imorphics dataset provided through the Osteoarthritis Initiative. The Imorphics dataset contained 176 image sequences with varying levels of cartilage degradation. Starting from an open-source swept-extrusion meshing algorithm, we further developed this algorithm until it could produce high quality meshes for every sequence and we applied a template-mapping procedure to automatically place soft-tissue attachment points. The meshing algorithm produced simulation-ready meshes for all 176 sequences, regardless of the use of provided (manually reconstructed) or predicted (automatically generated) segmentation labels. The average time to mesh all bones and cartilage tissues was less than 2 min per knee on an AMD Ryzen 5600X processor, using a parallel pool of three workers for bone meshing, followed by a pool of four workers meshing the four cartilage tissues. Of the 176 sequences with provided segmentation labels, 86% of the resulting meshes completed a simulated flexion-extension activity. We used a reserved testing dataset of 28 sequences unseen during network training to produce simulations derived from predicted labels. We compared tibiofemoral contact mechanics between manual and automated reconstructions for the 24 pairs of successful finite element simulations from this set, resulting in mean root-mean-squared differences under 20% of their respective min-max norms. In combination with further advancements in deep learning, this framework represents a feasible pipeline to produce population sized finite element studies of the natural knee from subject-specific models. 
    more » « less
  3. Abstract

    Across the globe, temperatures are predicted to increase with consequences for many taxonomic groups. Arthropods are particularly at risk as temperature imposes physiological constraints on growth, survival, and reproduction. Given that arthropods may be disproportionately affected in a warmer climate—the question becomes which taxa are vulnerable and can we predict the supposed winners and losers of climate change? To address this question, we resurveyed 33 ant communities, quantifying 20‐yr differences in the incidence of 28 genera. Each North American ant community was surveyed with 30 1‐m2plots, and the incidence of each genus across the 30 plots was used to estimate change. From the original surveys in 1994–1997 to the resurveys in 2016–2017, temperature increased on average 1°C (range, −0.4°C to 2.5°C) and ~64% of ant genera increased in more than half of the sampled communities. To test Thermal Performance Theory's prediction that genera with higher average thermal limits will tend to accumulate at the expense of those with lower limits, we quantified critical thermal maxima (CTmax: the high temperatures at which they lose muscle control) and minima (CTmin: the low temperatures at which ants first become inactive) for common genera at each site. Consistent with prediction, we found a positive decelerating relationship between CTmaxand the proportion of sites in which a genus had increased. CTmin, by contrast, was not a useful predictor of change. There was a strong positive correlation (r = 0.85) between the proportion of sites where a genus was found with higher incidence after 20 yr and the average difference in number of plots occupied per site, suggesting genera with high CTmaxvalues tended to occupy more plots at more sites after 20 yr. Thermal functional traits like CTmaxhave thus proved useful in predicting patterns of long‐term community change in a dominant, diverse insect taxon.

     
    more » « less
  4. null (Ed.)
    Abstract An autonomous adaptive model predictive control (MPC) architecture is presented for control of heating, ventilation, and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A yearlong simulation with a realistic plant shows that both of the features of the proposed architecture—periodic model and disturbance update and convexification of the planning problem—are essential to get performance improvement over a commonly used baseline controller. Without these features, long-term energy savings from MPC can be small while with them, the savings from MPC become substantial. 
    more » « less
  5. Abstract

    Differential privacy is a mathematical concept that provides an information-theoretic security guarantee. While differential privacy has emerged as a de facto standard for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with some serious limitations. Utility guarantees are usually provided only for a fixed, a priori specified set of queries. Moreover, there are no utility guarantees for more complex—but very common—machine learning tasks such as clustering or classification. In this paper we overcome some of these limitations. Working with metric privacy, a powerful generalization of differential privacy, we develop a polynomial-time algorithm that creates aprivate measurefrom a data set. This private measure allows us to efficiently construct private synthetic data that are accurate for a wide range of statistical analysis tools. Moreover, we prove an asymptotically sharp min-max result for private measures and synthetic data in general compact metric spaces, for any fixed privacy budget$$\varepsilon $$εbounded away from zero. A key ingredient in our construction is a newsuperregular random walk, whose joint distribution of steps is as regular as that of independent random variables, yet which deviates from the origin logarithmically slowly.

     
    more » « less