skip to main content

Title: Spatial heterogeneity of within-stream methane concentrations: METHANE SPATIAL VARIABILITY
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Page Range / eLocation ID:
1036 to 1048
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira ) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ 13 C of −44 to −58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of 13 C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150–million year–old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation. 
    more » « less
  2. Abstract

    In lakes, the production and emission of methane (CH4) have been linked to lake trophic status. However, few studies have quantified the temporal response of lake CH4dynamics to primary productivity at the ecosystem scale or considered how the response may vary across lakes. Here, we investigate relationships between lake CH4dynamics and ecosystem primary productivity across both space and time using data from five lakes in northern Wisconsin, USA. From 2014 to 2019, we estimated hypolimnetic CH4storage rates for each lake using timeseries of hypolimnetic CH4concentration through the summer season. Across all lakes and years, hypolimnetic CH4storage ranged from <0.001 to 7.6 mmol CH4 m−2 d−1and was positively related to the mean summer rate of gross primary productivity (GPP). However, within‐lake temporal responses to GPP diverged from the spatial relationship, and GPP was not a significant predictor of interannual variability in CH4storage at the lake scale. Using these data, we consider how and why temporal responses may differ from spatial patterns and demonstrate how extrapolating cross‐lake relationships for prediction at the lake scale may substantially overestimate the rate of change of CH4dynamics in response to lake primary productivity. We conclude that future predictions of lake‐mediated climate feedbacks in response to a shifting distribution of trophic status should incorporate both varying lake responses and the temporal scale of change.

    more » « less
  3. Abstract

    Headwater streams are known sources of methane (CH4) to the atmosphere, but their contribution to global scale budgets remains poorly constrained. While efforts have been made to better understand diffusive fluxes of CH4in streams, much less attention has been paid to ebullitive fluxes. We examine the temporal and spatial heterogeneity of CH4ebullition from four lowland headwater streams in the temperate northeastern United States over a 2‐yr period. Ebullition was observed in all monitored streams with an overall mean rate of 1.00 ± 0.23 mmol CH4m−2d−1, ranging from 0.01 to 1.79 to mmol CH4m−2d−1across streams. At biweekly timescales, rates of ebullition tended to increase with temperature. We observed a high degree of spatial heterogeneity in CH4ebullition within and across streams. Yet, catchment land use was not a simple predictor of this heterogeneity, and instead patches scale variability weakly explained by water depth and sediment organic matter content and quality. Overall, our results support the prevalence of CH4ebullition from streams and high levels of variability characteristic of this process. Our findings also highlight the need for robust temporal and spatial sampling of ebullition in lotic ecosystems to account for this high level of heterogeneity, where multiple sampling locations and times are necessary to accurately represent the mean rate of flux in a stream. The heterogeneity observed likely indicates a complex set of drivers affect CH4ebullition from streams which must be considered when upscaling site measurements to larger spatial scales.

    more » « less
  4. Abstract

    Small waterbodies have potentially high greenhouse gas emissions relative to their small footprint on the landscape, although there is high uncertainty in model estimates. Scaling their carbon dioxide (CO2) and methane (CH4) exchange with the atmosphere remains challenging due to an incomplete understanding and characterization of spatial and temporal variability in CO2and CH4. Here, we measured partial pressures of CO2(pCO2) and CH4(pCH4) across 30 ponds and shallow lakes during summer in temperate regions of Europe and North America. We sampled each waterbody in three locations at three times during the growing season, and tested which physical, chemical, and biological characteristics related to the means and variability ofpCO2andpCH4in space and time. Summer means ofpCO2andpCH4were inversely related to waterbody size and positively related to floating vegetative cover;pCO2was also positively related to dissolved phosphorus. Temporal variability in partial pressure in both gases weas greater than spatial variability. Although sampling on a single date was likely to misestimate mean seasonalpCO2by up to 26%, mean seasonalpCH4could be misestimated by up to 64.5%. Shallower systems displayed the most temporal variability inpCH4and waterbodies with more vegetation cover had lower temporal variability. Inland waters remain one of the most uncertain components of the global carbon budget; understanding spatial and temporal variability will ultimately help us to constrain our estimates and inform research priorities.

    more » « less