skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Social and demographic correlates of male androgen levels in wild white‐faced capuchin monkeys ( Cebus capucinus )
The Challenge Hypothesis, designed originally to explain the patterning of competitive behavior and androgen levels in seasonally breeding birds, predicts that males will increase their androgen levels in order to become more competitive in reproductive contexts. Here we test predictions derived from the Challenge Hypothesis in white‐faced capuchin monkeys (Cebus capucinus), a species that has somewhat seasonal reproduction. We analyzed demographic and hormonal data collected over a 5.25‐year period, from 18 males in nine social groups living in or near Lomas Barbudal Biological Reserve, Costa Rica. Alpha males had higher androgen levels than subordinates. Contrary to our predictions, neither the number of breeding‐age males nor the number of potentially fertile females was obviously associated with androgen levels. Furthermore, male androgen levels were not significantly linked to social stability, as measured by stability of male group membership or recency of change in the alpha male position. Androgen levels changed seasonally, but not in a manner that had an obvious relationship to predictions from the Challenge Hypothesis: levels were generally at their lowest near the beginning of the conception season, but instead of peaking when reproductive opportunities were greatest, they were at their highest near the end of the conception season or shortly thereafter. This lack of correspondence to the timing of conceptions suggests that there may be ecological factors not yet identified that influence ifA levels. We expected that the presence of offspring who were young enough to be vulnerable to infanticide during an alpha male takeover might influence androgen levels, at least in the alpha male, but this variable did not significantly impact results.  more » « less
Award ID(s):
0848360 0613226
PAR ID:
10034792
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Primatology
Volume:
79
Issue:
7
ISSN:
0275-2565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Androgens are important mediators of male‐male competition in many primate species. Male gorillas' morphology is consistent with a reproductive strategy that relies heavily on androgen‐dependent traits (e.g., extreme size and muscle mass). Despite possessing characteristics typical of species with an exclusively single‐male group structure, multimale groups with strong dominance hierarchies are common in mountain gorillas. Theory predicts that androgens should mediate their dominance hierarchies, and potentially vary with the type of group males live in. We validated the use of a testosterone enzyme immunoassay (T‐EIA R156/7, CJ Munro, UC‐Davis) for use with mountain gorilla fecal material by (1) examining individual‐level androgen responses to competitive events, and (2) isolating assay‐specific hormone metabolites via high‐performance liquid chromatography. Males had large (2.6‐ and 6.5‐fold), temporary increases in fecal androgen metabolite (FAM) after competitive events, and most captured metabolites were testosterone or 5α‐dihydrotestosterone‐like androgens. We then examined the relationship between males' dominance ranks, group type, and FAM concentrations. Males in single‐male groups had higher FAM concentrations than males in multimale groups, and a small pool of samples from solitary males suggested they may have lower FAM than group‐living peers. However, data from two different time periods (n = 1610 samples) indicated there was no clear relationship between rank and FAM concentrations, confirming results from the larger of two prior studies that measured urinary androgens. These findings highlight the need for additional research to clarify the surprising lack of a dominance hierarchy/androgen relationship in mountain gorillas. 
    more » « less
  2. Sex differences in vertebrate spatial abilities are typically interpreted under the adaptive specialization hypothesis, which posits that male reproductive success is linked to larger home ranges and better navigational skills. The androgen spillover hypothesis counters that enhanced male spatial performance may be a byproduct of higher androgen levels. Animal groups that include species where females are expected to outperform males based on life-history traits are key for disentangling these hypotheses. We investigated the association between sex differences in reproductive strategies, spatial behavior, and androgen levels in three species of poison frogs. We tracked individuals in natural environments to show that contrasting parental sex roles shape sex differences in space use, where the sex performing parental duties shows wider-ranging movements. We then translocated frogs from their home areas to test their navigational performance and found that the caring sex outperformed the non-caring sex only in one out of three species. In addition, males across species displayed more explorative behavior than females and androgen levels correlated with explorative behavior and homing accuracy. Overall, we reveal that poison frog reproductive strategies shape movement patterns but not necessarily navigational performance. Together this work suggests that prevailing adaptive hypotheses provide an incomplete explanation of sex differences in spatial abilities. 
    more » « less
  3. The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize “singing” males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms −2 ) that are 7–10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication. NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species’ reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal’s reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls. 
    more » « less
  4. null (Ed.)
    Male–male contest behavior can contribute to spatial distributions of male pinnipeds during breeding seasons. To maximize breeding opportunities, the most competitive males would be expected to be surrounded by the highest numbers of reproductive‐age females. As information regarding fine‐scale spatial ecology of Weddell seals is lacking, we performed an exploratory study using kernel density analyses to evaluate age‐specific habitat use of male Weddell seals in Erebus Bay, Antarctica. Additionally, we investigated the relationship between age and number of surrounding reproductive‐age females using a competing set of regression models in a Bayesian framework that considered different functional forms of age while incorporating individual heterogeneity. As male adult Weddell seals aged, to at least 20 years, they were more likely to be found in areas associated with the greatest densities of reproductive‐age females, but individual heterogeneity also influenced the number of reproductive‐age female neighbors. The youngest males tended to haul out in offshore areas associated with better hunting, and older males tended to settle in more nearshore areas associated with more pup production. Our findings from this preliminary investigation indicate that male Weddell seal spatial behavior during the breeding season varies with age and individual and might be related to reproductive activity. 
    more » « less
  5. Abstract BackgroundLife cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue‐specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. ResultsWe found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. ConclusionThis study provides an example of how seasonal heterochronic shifts in tissue‐specificargene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits. 
    more » « less