skip to main content


Title: Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations: EMIC WAVES RELATIVE TO THE PLASMAPAUSE
NSF-PAR ID:
10034867
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
122
Issue:
4
ISSN:
2169-9380
Page Range / eLocation ID:
4064 to 4088
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The plasmapause marks the limit of the plasmasphere and is characterized by a sudden change in plasma density. This can influence the other regions of the magnetosphere, including due to different waves circulating inside and outside the plasmasphere. In the present work, we first compare the positions of the plasmapause measured by the NASA Van Allen Probes in 2015 with those of the Space Weather Integrated Forecasting Framework plasmasphere model (SPM). Using the Van Allen Probes and other satellite observations like PROBA-V, we investigate the links that can exist with the radiation belt boundaries. The inward motion of the outer radiation belt associated with sudden flux enhancements of energetic electrons can indeed be directly related to the plasmapause erosion during geomagnetic storms, suggesting possible links. Moreover, the position of the plasmapause projected in the ionosphere is compared with the ionospheric convection boundary. The equatorward motion of the plasmapause projected in the ionosphere is related to the equatorward edge motion of the auroral oval that goes to lower latitudes during storms due to the geomagnetic perturbation, like the low altitude plasmapause and the outer radiation belt. The links between these different regions are investigated during quiet periods, for which the plasmasphere is widely extended, as well as during geomagnetic storms for which plumes are generated, and then afterwards rotates with the plasmasphere. The magnetic local time dependence of these boundaries is especially studied on March 14, 2014 after a sudden northward turning of the interplanetary magnetic field (IMF) and for the geomagnetic storm of August 26, 2018, showing the importance of the magnetic field topology and of the convection electric field in the interactions between these different regions eventually leading to the coupling between magnetosphere and ionosphere. 
    more » « less
  2. Abstract

    The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high‐resolution Van Allen Probes data has found a more complex relationship. For this study, we determine the standoff distance of the location of maximum electron flux of the outer belt MeV electrons from the plasmapause following rapid enhancement events. We find that the location of the outer radiation belt based on maximum electron flux is consistently outside the plasmapause, with a peak radial standoff distance of∆L ~ 1. We discuss the implications this result has for acceleration mechanisms.

     
    more » « less
  3. Abstract

    Ultralow frequency (ULF) electromagnetic waves are regularly detected by satellites near the plasmapause during substorms. Usually, the small‐scale waves are observed embedded in the large‐scale, quasi‐stationary electric field. We suggest that the small‐scale waves are generated in the ionosphere by the interactions between the large‐scale field and irregularities in the ionospheric density/conductivity. Under certain conditions, these waves can be trapped in the global magnetospheric resonator and amplified by the positive feedback interactions with the ionosphere. To verify this hypothesis, we model with a two‐fluid magnetohydrodynamics code structure and amplitude of the ULF waves simultaneously observed near the plasmapause by the Defense Meteorological Satellite Program satellite at low altitudes and the Combined Release and Radiation Effects satellite at high altitudes. Simulations reproduce in good, quantitative detail the structure and amplitude of the observed waves. In particular, simulations reproduce a “spiky” character of the electric field observed by the Defense Meteorological Satellite Program satellite at low altitude, which is a characteristic feature of ULF waves produced by the ionospheric feedback instability.

     
    more » « less
  4. Abstract

    Recent studies have indicated that fast magnetosonic waves (also referred to as equatorial noise) excited far outside the plasmapause cannot propagate deep into the plasmasphere because of the preferential azimuthal propagation of the waves at the source region. Since conditions in the low‐density plasma trough are typically favorable for the wave excitation, one possible explanation for the magnetosonic wave origin inside the plasmapause is refraction of the waves excited in the plasma trough but close to the plasmapause. In this study, two‐dimensional particle‐in‐cell (PIC) simulations are carried out at the dipole magnetic equator to investigate the self‐consistent excitation and propagation of magnetosonic waves across the steep plasmapause density gradient. The simulations show that the magnetosonic waves grow outside the plasmapause and propagate predominantly in the azimuthal direction. However, the waves excited close to the plasmapause experience refraction toward the density gradient, allowing them to cross the plasmapause and then propagate dominantly toward the Earth. The amount of refraction is in good agreement with a theoretical prediction based on the geometric optic approximation. We find that the refraction at the plasmapause can redirect magnetosonic waves toward the Earth, but an additional mechanism is needed to account for the statistical properties of the wave electric field polarization reported in the plasmasphere.

     
    more » « less