skip to main content


Title: Reaction Kinetics and Coking Behavior for Furan Deoxygenation via Catalytic Pyrolysis Using Methane
Abstract

The effective deoxygenation of oxygenates remains a major challenge that needs to be overcome for industrial‐scale conversion of biomass to fuels. Present technology uses expensive gaseous hydrogen for deoxygenation. This work looks at the possibility of using methane or natural gas as an alternative for the deoxygenation process. Catalytic pyrolysis studies were carried out using furan as the model oxygenate in the presence of methane in a fixed‐bed reactor over 5 % Ni/HZSM‐5 as catalyst. The effects of temperature and space velocity on the catalyst activity, reaction kinetics, and deactivation behavior were studied. It was found that the deoxygenation of furan was first and second order with respect to furan and methane concentration, respectively. Deactivation studies suggested that catalyst deactivation takes place through poisoning, fouling, and sintering.

 
more » « less
PAR ID:
10034913
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemical Engineering & Technology
Volume:
40
Issue:
6
ISSN:
0930-7516
Page Range / eLocation ID:
p. 1176-1183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Current biomass deoxygenation technologies require large quantities H2. Gaseous hydrogen is not a naturally‐occurring raw material and is largely produced industrially via natural gas/methane steam reforming. Due to its high thermodynamic stability, direct use of methane as a hydrogen‐donor for deoxygenation of complex oxygenates has not yet been demonstrated. Using catalytic pyrolysis studies performed at 700 °C with isotope labeled methane and glucose over Ni, Pt, Mo, and Ga impregnated HZSM‐5 (Si/Al ratio 30), here we show that methane, in fact, could be used as a direct hydrogen donor for deoxygenation reactions. The amount of aromatic hydrocarbons produced increased primarily in the presence of Mo (125 % increase), and to a lesser degree, Pt (50 % increase), and Ni (22 % increase) impregnated HZSM‐5 catalysts in a methane environment. Based on the metal present, results indicate the occurrence of distinct and concurrent reactions to various degrees: methane (steam) reforming and oxygenate dehydration reaction; independent aromatization of methane and oxygenates; and an intriguing methane oxygenate cross‐coupling reaction where both hydrogen and carbon from methane ending up in resultant deoxygenated aromatic products. This technique paves way for the direct use of methane/natural gas for deoxygenation reactions critical to biorefining.

     
    more » « less
  2. Abstract

    Gold (Au) on ceria–zirconia is one of the most active catalysts for the low‐temperature water–gas shift reaction (LTS), a key stage of upgrading H2reformate streams for fuel cells. However, this catalyst rapidly deactivates on‐stream and the deactivation mechanism remains unclear. Using stop–start scanning transmission electron microscopy to follow the exact same area of the sample at different stages of the LTS reaction, as well as complementary X‐ray photoelectron spectroscopy, we observed the activation and deactivation of the catalyst at various stages. During the heating of the catalyst to reaction temperature, we observed the formation of small Au nanoparticles (NPs; 1–2 nm) from subnanometer Au species. These NPs were then seen to agglomerate further over 48 h on‐stream, and most rapidly in the first 5 h when the highest rate of deactivation was observed. These findings suggest that the primary deactivation process consists of the loss of active sites through the agglomeration and possible dewetting of Au NPs.

     
    more » « less
  3. Abstract

    Gold (Au) on ceria–zirconia is one of the most active catalysts for the low‐temperature water–gas shift reaction (LTS), a key stage of upgrading H2reformate streams for fuel cells. However, this catalyst rapidly deactivates on‐stream and the deactivation mechanism remains unclear. Using stop–start scanning transmission electron microscopy to follow the exact same area of the sample at different stages of the LTS reaction, as well as complementary X‐ray photoelectron spectroscopy, we observed the activation and deactivation of the catalyst at various stages. During the heating of the catalyst to reaction temperature, we observed the formation of small Au nanoparticles (NPs; 1–2 nm) from subnanometer Au species. These NPs were then seen to agglomerate further over 48 h on‐stream, and most rapidly in the first 5 h when the highest rate of deactivation was observed. These findings suggest that the primary deactivation process consists of the loss of active sites through the agglomeration and possible dewetting of Au NPs.

     
    more » « less
  4. Abstract

    Cellulose is one of the main components of plant matter, which makes it a viable target for biomass conversion to fuels. The direct conversion of cellulose to methane utilizing nickel‐based catalysts often has challenges associated with it. Carbon agglomeration creating nickel‐carbon nanoparticles deactivating catalytic hydrogenation of cellulose has been well reported. Utilizing rare‐earth metals as promoters increases the conversion of cellulose to methane, albeit with deactivation of the catalyst in the form of nickel‐rare‐earth‐carbon nanoparticles. Adding an additional zinc metal promoter eliminates the carbon agglomeration and allows for increased methane yields. Herein, we report an 81 % methane yield from cellulose in 48 hours utilizing a Ni/Zn/Y/Al2O3catalyst at 225 °C and under 50 bar H2pressure.

     
    more » « less
  5. Abstract

    A new class of conjugated macrocycle, the cyclo[4]thiophene[4]furan hexyl ester (C4TE4FE), is reported. This cycle consists of alternating α‐linked thiophene‐3‐ester and furan‐3‐ester repeat units, and was prepared in a single step using Suzuki–Miyaura cross‐coupling of a 2‐(thiophen‐2‐yl)furan monomer. The ester side groups help promote asynconformation of the heterocycles, which enables formation of the macrocycle. Cyclic voltammetry studies revealed that C4TE4FE could undergo multiple oxidations, so treatment with SbCl5resulted in formation of the [C4TE4FE]2+dication. Computational work, paired with1H NMR spectroscopy of the dication, revealed that the cycle becomes globally aromatic upon 2eoxidation, as the annulene pathway along the outer ring becomes Hückel aromatic. The change in ring current for the cycle upon oxidation was clear from1H NMR spectroscopy, as the protons of the thiophene and furan rings shifted downfield by nearly 6 ppm. This work highlights the potential of sequence control in furan‐based macrocycles to tune electronic properties.

     
    more » « less