skip to main content


Title: Compositions Including Synthetic and Natural Blends for Integration and Structural Integrity: Engineered for Different Vascular Graft Applications

Tissue engineering approaches for small‐diameter arteries require a scaffold that simultaneously maintains patency by preventing thrombosis and intimal hyperplasia, maintains its structural integrity after grafting, and allows integration. While synthetic and extracellular matrix‐derived materials can provide some of these properties individually, developing a scaffold that provides the balanced properties needed for vascular graft survival in the clinic has been particularly challenging. After 30 years of research, there are now several scaffolds currently in clinical trials. However, these products are either being investigated for large‐diameter applications or they require pre‐seeding of endothelial cells. This progress report identifies important challenges unique to engineering vascular grafts for high pressure arteries less than 4 mm in diameter (e.g., coronary artery), and discusses limitations with the current usage of the term “small‐diameter.” Next, the composition and processing techniques used for generating tissue engineered vascular grafts (TEVGs) are discussed, with a focus on the benefits of blended materials. Other scaffolds for non‐tissue engineering approaches and stents are also briefly mentioned for comparison. Overall, this progress report discusses the importance of defining the most critical challenges for small diameter TEVGs, developing new scaffolds to provide these properties, and determining acceptable benchmarks for scaffold responses in the body.

 
more » « less
NSF-PAR ID:
10034998
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
6
Issue:
12
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we report the electrospinning and mechano-morphological characterizations of scaffolds based on blends of a novel poly(ester urethane urea) (PHH) and poly(dioxanone) (PDO). At the optimized electrospinning conditions, PHH, PDO and blend PHH/PDO in Hexafluroisopropanol (HFIP) solution yielded bead-free non-woven random nanofibers with high porosity and diameter in the range of hundreds of nanometers. The structural, morphological, and biomechanical properties were investigated using Differential Scanning Calorimetry, Scanning Electron Microscopy, Atomic Force Microscopy, and tensile tests. The blended scaffold showed an elastic modulus (~5 MPa) with a combination of the ultimate tensile strength (2 ± 0.5 MPa), and maximum elongation (150% ± 44%) in hydrated conditions, which are comparable to the materials currently being used for soft tissue applications such as skin, native arteries, and cardiac muscles applications. This demonstrates the feasibility of an electrospun PHH/PDO blend for cardiac patches or vascular graft applications that mimic the nanoscale structure and mechanical properties of native tissue. 
    more » « less
  2. Abstract

    Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post‐transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post‐implantation. Many researchers used microphysiological systems as testing platforms for potential grafts owing to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue‐specific materials, and biophysical and biochemical cues. Although many methods of vascularizing these systems exist, microvascular self‐assembly has great potential for bench‐to‐clinic translation as it relies on naturally occurring physiological events. In this review, the past decade of literature is highlighted, and the most important and tunable components yielding a self‐assembled vascular network on chip are critically discussed: endothelial cell source, tissue‐specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This paper discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis and includes a brief overview of multicellular systems. It concludes with future avenues of research to guide the next generation of vascularized microfluidic models.

     
    more » « less
  3. null (Ed.)
    A number of challenges in skin grafting for wound healing have drawn researchers to focus on skin tissue engineering as an alternative solution. The core idea of tissue engineering is to use scaffolds, cells, and/or bioactive molecules to help the skin to properly recover from injuries. Over the past decades, the field has significantly evolved, developing various strategies to accelerate and improve skin regeneration. However, there are still several concerns that should be addressed. Among these limitations, vascularization is known as a critical challenge that needs thorough consideration. Delayed wound healing of large defects results in an insufficient vascular network and ultimately ischemia. Recent advances in the field of tissue engineering paved the way to improve vascularization of skin substitutes. Broadly, these solutions can be classified into two categories as (1) use of growth factors, reactive oxygen species-inducing nanoparticles, and stem cells to promote angiogenesis, and (2) in vitro or in vivo prevascularization of skin grafts. This review summarizes the state-of-the-art approaches, their limitations, and highlights the latest advances in therapeutic vascularization strategies for skin tissue engineering. 
    more » « less
  4.  
    more » « less
  5. Abstract

    Stem cell−based therapies for various ailments have attracted significant attention for over a decade. However, low retention of transplanted cells at the damaged site has hindered their potential for use in therapy. Tissue engineered grafts with fibrillar structures mimicking the extracellular matrix (ECM) can be potentially used to increase the retention and engraftment of stem cells at the damaged site. Moreover, these grafts may also provide mechanical stability at the damaged site to enhance function and regeneration. Among all the methods to produce fibrillar structures developed in recent years, electrospinning is a simple and versatile method to produce fibrous structures ranging from a few nanometers to micrometers. Coaxial electrospinning enables production of a mechanically stable core with a cell‐binding sheath for enhanced cell adhesion and proliferation. Furthermore, this process provides an alternative to functionalized engineered scaffolds with specific compositions. The present article describes the protocol for developing a polycaprolactone (PCL) core and gelatin/gelatin methacrylate (GelMA) sheath laden with stem cells for various regenerative engineering applications. © 2021 Wiley Periodicals LLC.

    This article was corrected on 18 July 2022. See the end of the full text for details.

    Basic Protocol 1: Uniaxial PCL electrospinning

    Basic Protocol 2: Coaxial electrospinning

    Support Protocol 1: Scaffold characterization for Basic Protocols 1 and 2

    Basic Protocol 3: Cell seeding on uniaxial and coaxial electrospun scaffolds and MTS assay

    Support Protocol 2: Preparation of scaffold with cells for scanning electron microscopy

     
    more » « less