skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Hydrologic refugia, plants, and climate change
Abstract

Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates,hydrologic microrefugiaare likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species‐specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate‐cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.

 
more » « less
NSF-PAR ID:
10035225
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
23
Issue:
8
ISSN:
1354-1013
Page Range / eLocation ID:
p. 2941-2961
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cold‐air pooling is a global phenomenon that frequently sustains low temperatures in sheltered, low‐lying depressions and valleys and drives other key environmental conditions, such as soil temperature, soil moisture, vapor pressure deficit, frost frequency, and winter dynamics. Local climate patterns in areas prone to cold‐air pooling are partly decoupled from regional climates and thus may be buffered from macroscale climate change. There is compelling evidence from studies across the globe that cold‐air pooling impacts plant communities and species distributions, making these decoupled microclimate areas potentially important microrefugia for species under climate warming. Despite interest in the potential for cold‐air pools to enable species persistence under warming, studies investigating the effects of cold‐air pooling on ecosystem processes are scarce. Because local temperatures and vegetation composition are critical drivers of ecosystem processes like carbon cycling and storage, cold‐air pooling may also act to preserve ecosystem functions. We review research exploring the ecological impacts of cold‐air pooling with a focus on vegetation, and then present a new conceptual framework in which cold‐air pooling creates feedbacks between species and ecosystem properties that generate unique hotspots for carbon accrual in some systems relative to areas more vulnerable to regional climate change impacts. Finally, we describe key steps to motivate future research investigating the potential for cold‐air pools to serve as microrefugia for ecosystem functions under climate change.

     
    more » « less
  2. Abstract

    Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia‐like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia‐like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.

     
    more » « less
  3. Abstract

    Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water‐limited ecosystems, and is an under‐studied aspect of tree drought vulnerability. With California's 2013–2016 extraordinary drought as a natural experiment, we studied four co‐occurring woodland tree species, blue oak (Quercus douglasii), valley oak (Quercus lobata), gray pine (Pinus sabiniana), and California juniper (Juniperus californica), examining drought vulnerability as a function of climate, lithology and hydrology using regional aerial dieback surveys and site‐scale field surveys. We found that in addition to climatic drought severity (i.e., rainfall), subsurface processes explained variation in drought vulnerability within and across species at both scales. Regionally for blue oak, severity of dieback was related to the bedrock lithology, with higher mortality on igneous and metamorphic substrates, and to regional reductions in groundwater. At the site scale, access to deep subsurface water, evidenced by stem water stable isotope composition, was related to canopy condition across all species. Along hillslope gradients, channel locations supported similar environments in terms of water stress across a wide climatic gradient, indicating that subsurface hydrology mediates species’ experience of drought, and that areas associated with persistent access to subsurface hydrologic resources may provide important refugia at species’ xeric range edges. Despite this persistent overall influence of the subsurface environment, individual species showed markedly different response patterns. We argue that hydrologic niche segregation can be a useful lens through which to interpret these differences in vulnerability to climatic drought and climate change.

     
    more » « less
  4. Abstract

    The impacts of climate change have re‐energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range‐limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors—climate heterogeneity, collinearity among climate variables, and spatial scale—interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.

     
    more » « less
  5. Infrequent stand-replacing wildfires are characteristic of mesic and/or cool conifer forests in western North America, where forest recovery within high-severity burn patch interiors can be slow, yet successful over long temporal periods (decades to centuries). Increasing fire frequency and high-severity burn patch size, under a warming climate, however, may challenge post-fire forest recovery, promoting landscape-level shifts in forest structure, composition, and distribution of non-forest patches. Crucial to a delay and/or impediment to this shift, fire refugia (i.e., remnant seed sources) may determine forest recovery trajectories and potential forest state-transitions. To examine how fire refugia attributes (i.e. extent, composition, and structure) interact with local climate and environmental conditions to determine post-fire forest recovery responses, we developed fine-grain maps of fire refugia via remote sensing and conducted field-based assessment of post-fire conifer tree establishment largely originating (i.e., dispersed) from fire refugium in the Central Cascade Range of the Pacific Northwest United States. We found that limitations on seed availability, represented by the distance 2 -weighted density (D 2 WD) of fine-grain refugia extent, largely explained post-fire tree establishment responses within our relatively mesic and cool subalpine study sites. Interactions between seed availability, climate, and environmental conditions indicated that the structural attributes of refugia (e.g., tree height) and site abiotic/biotic environmental controls (e.g., climate water deficit, canopy cover, and coarse woody debris cover) interplayed to constrain or enhance species-specific tree establishment responses. Importantly, these interactions illustrate that when seed availability is critically low for a given area, climate-environment conditions may strongly determine whether forests recover following fire(s). Toward modelling and predicting tree establishment responses and potential forest state-transitions after large stand-replacing fires(s), our study demonstrates the importance of accurately quantifying seed availability via the fine-grain extent, configuration, and attributes of remnant seed source legacies. 
    more » « less