skip to main content


Title: High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought
Abstract

Hotter, longer, and more frequent global change‐type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought‐induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean‐type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multiyear drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water‐use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation‐type conversion.

 
more » « less
NSF-PAR ID:
10035237
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
23
Issue:
10
ISSN:
1354-1013
Page Range / eLocation ID:
p. 4333-4345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Riparian zones are among the most biologically diverse ecosystems in the Intermountain West, USA, and provide valuable ecosystem services, including high rates of biotic productivity, nutrient processing, and carbon storage. Thus, their sustainability is a high priority for land managers. Large ungulates affect composition and structure of riparian/stream ecosystems through herbivory and physical effects, via trailing and trampling. Bison (Bison bison) in Yellowstone National Park (YNP) have been characterized as “ecosystem engineers” because of their demonstrated effects on phenology, aboveground productivity of grasses, and woody vegetation structure. Bison have greatly increased in numbers during the last two decades and spend large periods of time in the broad open floodplains of the Northern Range of the Park, where they are hypothesized to have multiple effects on plant species composition and diversity. We sampled indicators of bison use as well as riparian vegetation composition, diversity, and structure along eight headwater streams within YNP's Northern Range. Total fecal density ranged from 333 to 1833 fecal chips and/or piles/ha, stubble heights ranged from 7 to 49 cm, and streambank disturbance ranged from 9% to 62%. High levels of bison use were positively correlated with exotic species dominance and negatively correlated with species richness, native species diversity, willow (Salixspp.) cover, and wetland species dominance. At three sites, the intensity of bison use exceeded recommended utilization thresholds to avoid degradation of streams and riparian zones on public lands. The influences of large herbivores, principally bison, on vegetation composition and structure suggest the cumulative effects of the current densities on the Northern Range are contributing to biotic impoverishment, representing the loss of ecosystem services that are provided by native riparian plant communities. In addition, contemporary levels of bison use may be exacerbating climate change effects as observed through ungulate‐related shifts in composition toward plant assemblages adapted to warmer and drier conditions. However, the resilience of native riparian vegetation suggests that sites currently heavily utilized by bison would have the potential for recovery with a reduction in pressure by this herbivore.

     
    more » « less
  2. The overall goal of the rainfall manipulation project is to understand the coupled ecological and hydrological responses of a grassland, shrubland and a mixed grass-shrub vegetation community to extended periods of increased or decreased rainfall. Rainfall manipulation plots have been established in each of these three vegetation communities in the Five Points area of Sevilleta National Wildlife Refuge. In each vegetation community, three control plots, three drought treatment plots, and three water addition plots have been installed, each approximately 10 x 15 m in size. In each plot, vertical profiles of soil moisture probes have been installed under each cover type (canopy and interspace in grassland and shrubland; grass canopy, shrub canopy and interspace at the ecotone (mixed grass-shrub) site). The probes measure differences in infiltration and soil water content and potential associations with these different cover types. In addition, TDR probes have been installed diagonally in each cover type to integrate the water content of the top 15 cm of soil. Each plot contains 18, 1m2 quads made up of 6, 1m2 quads along each of the 3 transects located across each plot. Each spring and fall, the following parameters are measured in every quad: live plant cover, height, and abundance by species; dead plant cover; soil cover; litter cover; and rock cover. Data collection began in the drought and control plots in the spring of 2002. Data collection began in the water addition plots in the spring of 2004.In the grassland and shrubland communities, all nine currently established plots are located together. The three drought plots were located under a single large roof with a 0.5 m path separating each plot (drought treatments ended in 2006). The control plots and water addition plots are similarly grouped, but without the shelter structure. In the ecotone community, the plots are in three groups; each group is comprised of one drought plot, one water addition plot, and one control plot. Control plots received no experimental treatment, while the sliding roofs over the drought plots were used to divert precipitation, producing a long-term drought. The roofs covering the drought plots were lowered when there was no precipitation so that the amount of sunlight received by the drought plots was minimally affected. Water addition was intended to impose a complementary increase in water supply on the water addition plots.  
    more » « less
  3. Abstract

    Extreme drought and increasing temperatures can decrease the resilience of plant communities to fires. Not only may extremely dry conditions during or after fires lead to higher plant mortality and poorer recruitment, but severe pre‐fire droughts may reduce the seed production and belowground vigor that are essential to post‐fire plant recovery, and may indirectly facilitate invasion. We studied survival, recruitment, and growth of shrubs and herbs in chaparral (shrubland) communities in Northern California after a 2015 fire that immediately followed California’s extreme 3‐yr drought. We followed the same protocols used to study similar, adjacent communities after a 1999 fire that did not follow a drought, and we compared the two recovery trajectories. Overall, the 2015 fire was not more severe than the 1999 fire, yet it caused higher mortality and lower growth of resprouting shrubs on fertile (sandstone) soils. In contrast, the 2015 fire did not affect the mortality or growth of resprouting shrubs on infertile (serpentine) soils, the density of shrub seedlings, or the richness or cover of native herbs differently than the 1999 fire. However, the 2015 fire facilitated a massive increase in exotic herbaceous cover, especially on fertile soils, possibly portending the early stages of a type conversion to exotic‐dominated grassland. Our findings indicate that the consequences of climate change on fire‐dependent communities will include effects of pre‐fire as well as post‐fire climate, and that resprouting shrubs are particularly likely to be sensitive to pre‐fire drought.

     
    more » « less
  4. Abstract

    Habitat‐suitability indices (HSI) have been employed in restoration to identify optimal sites for planting native species. Often, HSI are based on abiotic variables and do not include biotic interactions, even though similar abiotic conditions can favor both native and nonnative species. Biotic interactions such as competition may be especially important in invader‐dominated habitats because invasive species often have fast growth rates and can exploit resources quickly. In this study, we test the utility of an HSI of microtopography derived from airborne LiDAR to predict post‐disturbance recovery and native planting success in native shrub‐dominated and nonnative, invasive grass‐dominated dryland habitats in Hawaiʻi. The HSI uses high‐resolution digital terrain models to classify sites' microtopography as high, medium, or low suitability, based on wind exposure and topographic position. We used a split‐plot before‐after‐control‐impact design to implement a disturbance experiment within native shrub (Dodonaea viscosa) and nonnative, invasive grass (Cenchrus clandestinus)‐dominated ecosystems across three microtopography categories. In contrast to previous studies using the same HSI, we found that microtopography was a poor predictor of pre‐disturbance conditions for soil nutrients, organic matter content, or foliar C:N, within bothDodonaeaandCenchrusvegetation types. In invader‐dominatedCenchrusplots, microtopography helped predict cover, but not as expected (i.e., highest cover would be in high‐suitability plots):D. viscosahad the greatest cover in low‐suitability andC. clandestinushad the greatest cover in medium‐suitability plots. Similarly, in native‐dominatedDodonaeaplots, microtopography was a poor predictor ofD. viscosa,C. clandestinus, and total plant cover. Although we found some evidence that microtopography helped inform post‐disturbance plant recovery ofD. viscosaand total plant cover, vegetation type was a more important predictor. Important for considering the success of plantings, percent cover ofD. viscosadecreased while percent cover ofC. clandestinusincreased within both vegetation types 20 months after disturbance. Our results are evidence that HSIs based on topographic features may prove most useful for choosing planting sites in harsh habitats or those already dominated by native species. In more productive habitats, competition from resident species may offset any benefits gained from “better” suitability sites.

     
    more » « less
  5. Abstract

    Climate forecasts agree that increased variability and extremes will tend to reduce the availability of water in many terrestrial ecosystems. Increasingly severe droughts may be exacerbated both by warmer temperatures and by the relative unavailability of water that arrives in more sporadic and intense rainfall events. Using long‐term data and an experimental water manipulation, we examined the resilience of a heterogeneous annual grassland community to a prolonged series of dry winters that led to a decline in plant species richness (2000–2014), followed by a near‐record wet winter (2016–2017), a climatic sequence that broadly resembles the predicted future in its high variability. In our 80, 5‐m2observational plots, species richness did not recover in response to the wet winter, and the positive relationship of richness to annual winter rainfall thus showed a significant weakening trend over the 18‐year time period. In experiments on 100, 1‐m2plots, wintertime water supplementation increased and drought shelters decreased the seedling survival and final individual biomass of native annual forbs, the main functional group contributing to the observed long‐term decline in richness. Water supplementation also increased the total cover of native annual forbs, but only increased richness within nested subplots to which seeds were also added. We conclude that prolonged dry winters, by increasing seedling mortality and reducing growth of native forbs, may have diminished the seedbank and thus the recovery potential of diversity in this community. However, the wet winter and the watering treatment did cause recovery of the community mean values of a key functional trait (specific leaf area, an indicator of drought intolerance), suggesting that some aggregate community properties may be stabilized by functional redundancy among species.

     
    more » « less