skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Impact of the Economic Structure of Cities on Urban Scaling Factors: Implications for Urban Material and Energy Flows in China: Impact of the Economic Structure of Cities on Urban Scaling Factors
NSF-PAR ID:
10035248
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Industrial Ecology
ISSN:
1088-1980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Urban areas experience numerous environmental challenges, among which the anthropogenic emissions of heat and carbon are two major contributors, the former is responsible for the notorious urban heat effect, the latter longterm climate changes. Moreover, the exchange of heat and carbon dioxide are closely interlinked in the built environment, and can form positive feedback loops that accelerate the degradation of urban environmental quality. Among a handful countermeasures for heat and carbon mitigation, urban irrigation is believed to be effective in cooling, yet the understanding of its impact on the co-evolution of heat and carbon emission remains obscure. In this study, we conducted multiphysics urban climate modeling for all urban areas in the contiguous United States, and evaluated the irrigation-induced cooling and carbon mitigation. Furthermore, we assessed the impact of urban irrigation on the potential heat-carbon feedback loop, with their strength of coupling quantified by an advanced causal inference method using the convergent cross mapping algorithms. It is found that the impact of urban irrigation varies vastly in geographically different cities, with its local and non-local effect unraveling distinct pathways of heat-carbon feedback mechanism. 
    more » « less
  2. Abstract

    The ongoing SARS-CoV-2 pandemic has been holding the world hostage for several years now. Mobility is key to viral spreading and its restriction is the main non-pharmaceutical interventions to fight the virus expansion. Previous works have shown a connection between the structural organization of cities and the movement patterns of their residents. This puts urban centers in the focus of epidemic surveillance and interventions. Here we show that the organization of urban flows has a tremendous impact on disease spreading and on the amenability of different mitigation strategies. By studying anonymous and aggregated intra-urban flows in a variety of cities in the United States and other countries, and a combination of empirical analysis and analytical methods, we demonstrate that the response of cities to epidemic spreading can be roughly classified in two major types according to the overall organization of those flows. Hierarchical cities, where flows are concentrated primarily between mobility hotspots, are particularly vulnerable to the rapid spread of epidemics. Nevertheless, mobility restrictions in such types of cities are very effective in mitigating the spread of a virus. Conversely, in sprawled cities which present many centers of activity, the spread of an epidemic is much slower, but the response to mobility restrictions is much weaker and less effective. Investing resources on early monitoring and prompt ad-hoc interventions in more vulnerable cities may prove helpful in containing and reducing the impact of future pandemics.

     
    more » « less
  3. Urban greenery is a natural solution to cool cities and provide comfort, clean air and significant social, health and economic benefits. This paper aims to present the latest progress on the field of greenery urban mitigation techniques including aspects related to the theoretical and experimental assessment of the greenery cooling potential, the impact on urban vegetation on energy, health and comfort and the acquired knowledge on the best integration of the various types of greenery in the urban frame. Also to present the recent knowledge on the impact of climate change on the cooling performance of urban vegetation and investigate and analyse possible technological solutions to face the impact of high ambient temperatures. 
    more » « less
  4. In this paper, we use a procedural generation system to design urban layouts that passively reduce water depth during urban floods. The tool enables designing cities that passively lower flood depth everywhere or in chosen key areas. Our approach integrates a porosity-based hydraulic model and a parameterized urban generation system with an optimization engine so as to find the least cost modification to an initial urban layout. In order to investigate the relationship between urban layout design parameters and flood inundation depth, correlation coefficient method is used. This paper concludes that the most influential urban layout parameters are average road length and the mean parcel area. 
    more » « less