skip to main content


Title: Thickness-dependent domain wall reorientation in 70/30 lead magnesium niobate- lead titanate thin films
Award ID(s):
1410907
NSF-PAR ID:
10035471
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
100
Issue:
9
ISSN:
0002-7820
Page Range / eLocation ID:
3961 to 3972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Control over the nucleation and growth of lead-halide perovskite crystals is critical to obtain semiconductor films with high quantum yields in optoelectronic devices. In this report, we use the change in fluorescence brightness to image the transformation of individual lead bromide (PbBr 2 ) nanocrystals to methylammonium lead bromide (CH 3 NH 3 PbBr 3 ) via intercalation of CH 3 NH 3 Br. Analyzing this reaction one nanocrystal at a time reveals information that is masked when the fluorescence intensity is averaged over many particles. Sharp rises in the intensity of single nanocrystals indicate they transform much faster than the time it takes for the ensemble average to transform. While the ensemble reaction rate increases with increasing CH 3 NH 3 Br concentration, the intensity rises for individual nanocrystals are insensitive to the CH 3 NH 3 Br concentration. To explain these observations, we propose a phase-transformation model in which the reconstructive transitions necessary to convert a PbBr 2 nanocrystal into CH 3 NH 3 PbBr 3 initially create a high energy barrier for ion intercalation. A critical point in the transformation occurs when the crystal adopts the perovskite phase, at which point the activation energy for further ion intercalation becomes progressively smaller. Monte Carlo simulations that incorporate this change in activation barrier into the likelihood of reaction events reproduce key experimental observations for the intensity trajectories of individual particles. The insights gained from this study may be used to further control the crystallization of CH 3 NH 3 PbBr 3 and other solution-processed semiconductors. 
    more » « less
  2. A bstract Coherent production of J/ψ mesons is studied in ultraperipheral lead-lead collisions at a nucleon-nucleon centre-of-mass energy of 5 TeV, using a data sample collected by the LHCb experiment corresponding to an integrated luminosity of about 10 μb −1 . The J/ψ mesons are reconstructed in the dimuon final state and are required to have transverse momentum below 1 GeV. The cross-section within the rapidity range of 2 . 0 < y < 4 . 5 is measured to be 4 . 45 ± 0 . 24 ± 0 . 18 ± 0 . 58 mb, where the first uncertainty is statistical, the second systematic and the third originates from the luminosity determination. The cross-section is also measured in J/ψ rapidity intervals. The results are compared to predictions from phenomenological models. 
    more » « less
  3. Leads play an important role in the exchange of heat, gases, vapour, and particles between seawater and the atmosphere in ice-covered polar oceans. In summer, these processes can be modified significantly by the formation of a meltwater layer at the surface, yet we know little about the dynamics of meltwater layer formation and persistence. During the drift campaign of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), we examined how variation in lead width, re-freezing, and mixing events affected the vertical structure of lead waters during late summer in the central Arctic. At the beginning of the 4-week survey period, a meltwater layer occupied the surface 0.8 m of the lead, and temperature and salinity showed strong vertical gradients. Stable oxygen isotopes indicate that the meltwater consisted mainly of sea ice meltwater rather than snow meltwater. During the first half of the survey period (before freezing), the meltwater layer thickness decreased rapidly as lead width increased and stretched the layer horizontally. During the latter half of the survey period (after freezing of the lead surface), stratification weakened and the meltwater layer became thinner before disappearing completely due to surface ice formation and mixing processes. Removal of meltwater during surface ice formation explained about 43% of the reduction in thickness of the meltwater layer. The remaining approximate 57% could be explained by mixing within the water column initiated by disturbance of the lower boundary of the meltwater layer through wind-induced ice floe drift. These results indicate that rapid, dynamic changes to lead water structure can have potentially significant effects on the exchange of physical and biogeochemical components throughout the atmosphere–lead–underlying seawater system.

     
    more » « less
  4. Despite the high-efficiency and low-cost prospect for perovskite solar cells, great concerns of lead toxicity and instability remain for this technology. Here, we report an encapsulation strategy for perovskite modules based on lead-adsorbing ionogel, which prevents lead leakage and withstand long-term stability tests. The ionogel layers integrated on both sides of modules enhance impact resistance. The self-healable ionogel can prevent water permeation into the perovskite layer and adsorb lead that might leak. The encapsulated devices pass the damp heat and thermal cycling accelerated stability tests according to International Electrotechnical Commission 61215 standard. The ionogel encapsulation reduces lead leakage to undetectable level after the hail-damaged module is soaked in water for 24 hours. Even being rolled over by a car followed by water soaking for 45 days, the ionogel encapsulation reduces lead leakage by three orders of magnitude. This work provides a strategy to simultaneously address lead leakage and stability for perovskite modules. 
    more » « less