skip to main content

Title: The structured diversity of specialized gut symbionts of the New World army ants

Symbiotic bacteria play important roles in the biology of their arthropod hosts. Yet the microbiota of many diverse and influential groups remain understudied, resulting in a paucity of information on the fidelities and histories of these associations. Motivated by prior findings from a smaller scale, 16SrRNA‐based study, we conducted a broad phylogenetic and geographic survey of microbial communities in the ecologically dominant New World army ants (Formicidae: Dorylinae). Amplicon sequencing of the 16SrRNAgene across 28 species spanning the five New World genera showed that the microbial communities of army ants consist of very few common and abundant bacterial species. The two most abundant microbes, referred to as Unclassified Firmicutes and Unclassified Entomoplasmatales, appear to be specialized army ant associates that dominate microbial communities in the gut lumen of three host genera,Eciton,LabidusandNomamyrmex. Both are present in other army ant genera, including those from the Old World, suggesting that army ant symbioses date back to the Cretaceous. Extensive sequencing of bacterial protein‐coding genes revealed multiple strains of these symbionts coexisting within colonies, but seldom within the same individual ant. Bacterial strains formed multiple host species‐specific lineages on phylogenies, which often grouped strains from distant geographic locations. These patterns deviate from those seen in other social insects and raise intriguing questions about the influence of army ant colony swarm‐founding and within‐colony genetic diversity on strain coexistence, and the effects of hosting a diverse suite of symbiont strains on colony ecology.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
p. 3808-3825
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army antEciton burchelliiwith those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated byRickettsia,Wolbachia,Rickettsiellaand/orWeissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein‐coding gene sequences confirmed the close relationship ofWeissellastrains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.

    more » « less
  2. Abstract

    Host‐restricted lineages of gut bacteria often include many closely related strains, but this fine‐scale diversity is rarely investigated. The specialized gut symbiontSnodgrassella alvihas codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years.Snodgrassella alvistrains are nearly identical for 16SrRNAgene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examinedS. alvistrain diversity within and between hosts using deep sequencing both of a single‐copy coding gene (minD) and of the V4 region of the 16SrRNAgene. We sampled workers from domestic and feralA. melliferacolonies and wild‐caughtBombusrepresenting 14 species. Conventional analyses of community profiles, based on the V4 region of the 16SrRNAgene, failed to expose most strain variation. In contrast, theminDanalysis revealed extensive strain variation within and between host species and individuals.Snodgrassella alvistrain diversity is significantly higher inA. melliferathan inBombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. MostBombusindividuals (72%) are dominated by a singleS. alvistrain, whereas mostA. mellifera(86%) possess multiple strains. NoS. alvistrains are shared betweenA. melliferaandBombus, indicating some host specificity. AmongBombus‐restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations.

    more » « less
  3. Abstract

    Animals maintain complex associations with a diverse microbiota living in their guts. Our understanding of the ecology of these associations is extremely limited in reptiles. Here, we report an in‐depth study into the microbial ecology of gut communities in three syntopic and viviparous lizard species (two omnivores:Liolaemus parvusandLiolaemus ruibaliand an herbivore: Phymaturus williamsi). Using 16SrRNAgene sequencing to inventory various bacterial communities, we elucidate four major findings: (i) closely related lizard species harbour distinct gut bacterial microbiota that remain distinguishable in captivity; a considerable portion of gut bacterial diversity (39.1%) in nature overlap with that found on plant material, (ii) captivity changes bacterial community composition, although host‐specific communities are retained, (iii) faecal samples are largely representative of the hindgut bacterial community and thus represent acceptable sources for nondestructive sampling, and (iv) lizards born in captivity and separated from their mothers within 24 h shared 34.3% of their gut bacterial diversity with their mothers, suggestive of maternal or environmental transmission. Each of these findings represents the first time such a topic has been investigated in lizard hosts. Taken together, our findings provide a foundation for comparative analyses of the faecal and gastrointestinal microbiota of reptile hosts.

    more » « less
  4. Summary

    Marine sponges harbour diverse communities of microbes. Mechanisms used to establish microbial symbioses in sponges are poorly understood, and the relative contributions of horizontal and vertical transmission are unknown for most species. We examined microbial communities in adults and larvae of carotenoid‐richClathria proliferaandHalichondria bowerbankifrom the mid‐Atlantic region of the eastern United States. We sequenced microbiomes from larvae and their mothers and seawater (16S rRNA gene sequencing), and compared microbial community characteristics between species and ambient seawater. The microbial communities in sponges were significantly different than those found in seawater, and each species harboured a distinctive microbiome. Larval microbiomes exhibited significantly lower richness compared with adults, with both sponges appearing to transfer to larvae a particular subset of the adult microbiome. We also surveyed culturable bacteria isolated from larvae of both species. Due to conspicuous coloration of adults and larvae, we focused on pigmented heterotrophic bacteria. We found that the densities of bacteria, in terms of colony‐forming units and pigmented heterotrophic bacteria, were higher in larvae than in seawater. We identified a common mode of transmission (vertical and horizontal) of microbes in both sponges that might differ between species.

    more » « less
  5. Abstract

    For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated byPhormidiumandPlanktothrixthat is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16SrRNAgene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa ofDeltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in theMISwere distinctly different from those in typicalLHsediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related toMISmicrobial community composition, whileLHcommunities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.

    more » « less