skip to main content


Title: Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence: TURBULENCE-INDUCED CLOUD CLEANSING
NSF-PAR ID:
10035935
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
9
ISSN:
0094-8276
Page Range / eLocation ID:
4359 to 4367
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Activation is the first step in aerosol‐cloud interactions, which have been identified as one of the principal uncertainties in Earth's climate system. Aerosol particles become cloud droplets, or activate, when the ambient saturation ratio exceeds a threshold, which depends on the particle's size and hygroscopicity. In the traditional formulation of the process, only average, uniform saturation ratios are considered. However, turbulent environments like clouds intrinsically have fluctuations around mean values in the scalar fields of temperature and water vapor concentration, which determine the saturation ratio. Through laboratory measurements, we show that these fluctuations are an important parameter that needs to be addressed to fully describe activation. Our results show, even for single‐sized, chemically homogeneous aerosols, that fluctuations blur the correspondence between activation and a particle's size and chemical composition, that turbulence can increase the fraction of aerosol particles which activate, and that the activated fraction decreases monotonically as the concentration of aerosol increases. Taken together, our data demonstrate that fluctuations can have effects equivalent to the aerosol limited and updraft limited regimes, known from adiabatic parcel theory.

     
    more » « less
  2. Abstract

    The convection–cloud chamber enables measurement of aerosol and cloud microphysics, as well as their interactions, within a turbulent environment under steady‐state conditions. Increasing the size of a convection–cloud chamber, while holding the imposed temperature difference constant, leads to increased Rayleigh, Reynolds and Nusselt numbers. Large–eddy simulation coupled with a bin microphysics model allows the influence of increased velocity, time, and spatial scales on cloud microphysical properties to be explored. Simulations of a convection–cloud chamber, with fixed aspect ratio and increasing heights ofH = 1, 2, 4, and (for dry conditions only) 8 m are performed. The key findings are: Velocity fluctuations scale asH1/3, consistent with the Deardorff expression for convective velocity, and implying that the turbulence correlation time scales asH2/3. Temperature and other scalar fluctuations scale asH−3/7. Droplet size distributions from chambers of different sizes can be matched by adjusting the total aerosol injection rate as the horizontal cross‐sectional area (i.e., asH2for constant aspect ratio). Injection of aerosols at a point versus distributed throughout the volume makes no difference for polluted conditions, but can lead to cloud droplet size distribution broadening in clean conditions. Cloud droplet growth by collision and coalescence leads to a broader right tail of the distribution compared to condensation growth alone, and this tail increases in magnitude and extent monotonically as the increase of chamber height. These results also have implications for scaling within turbulent, cloudy mixed‐layers in the atmosphere, such as fog layers.

     
    more » « less