skip to main content

Title: Productivity patterns in the equatorial Pacific over the last 30,000 years: Productivity in the Equatorial Pacific
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Global Biogeochemical Cycles
Page Range / eLocation ID:
850 to 865
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The modern eastern equatorial Pacific Ocean (EEP) exhibits strong upwelling, producing pronounced gradients in sea surface temperature (SST), nutrient concentration, and biological productivity between 80° and 140°W. During the globally warmer late Pliocene (3.0–3.6 Ma), the EEP may have experienced permanent El Niño‐like conditions, supported by a reduced SST gradient across the equatorial Pacific. However, the weakened east‐west SST gradient has been controversial, with disparate results depending on the proxy used to monitor Western Warm Pool SSTs. We present new Pliocene alkenone‐based SST and paleoproductivity records from four Ocean Drilling Program (ODP) cores spanning an east‐west transect across the EEP, which present an internally consistent picture of SST and productivity gradients in the modern cold tongue, resolved at orbital‐scale variability. Strong agreement between core top reconstructions and satellite estimates indicates that alkenone paleotemperature and paleoproductivity proxies are appropriate for reconstructing Pliocene EEP conditions. The average SST gradient between 90° and 120°W was reduced from the modern 1.8°C gradient to 0.9°C in the late Pliocene. Despite the weakened SST gradient, the surface productivity gradient was stronger during the late Pliocene compared to modern, based on calibrated X‐ray fluorescence biogenic opal and alkenone average accumulation rates. Contrary to modern El Niño SST and productivity patterns, reduced Pliocene surface productivity did not accompany the weakened SST gradient. Instead, strong Pliocene biogenic opal and alkenone concentration accumulation gradients in the eastern EEP suggest that subsurface tilting of the nutricline and thermocline persisted to supply vigorous upwelling of warm but nutrient‐rich subsurface waters in a warmer climate.

    more » « less
  2. null (Ed.)
    Abstract The origins of an observed weakly sheared nonturbulent (laminar) layer (WSL), and a strongly sheared turbulent layer above the Equatorial Undercurrent core (UCL) in the eastern equatorial Pacific are studied, based mainly on the data from the Tropical Atmosphere and Ocean mooring array. Multiple-time-scale (from 3 to 25 days) equatorial waves were manifested primarily as zonal velocity oscillations with the maximum amplitudes (from 10 to 30 cm s −1 ) occurring at different depths (from the surface to 85-m depths) above the seasonal thermocline. The subsurface-intensified waves led to vertically out-of-phase shear variations in the upper thermocline via destructive interference with the seasonal zonal flow, opposing the tendency for shear instability. These waves were also associated with depth-dependent, multiple-vertical-scale stratification variations, with phase lags of π /2 or π , further altering stability of the zonal current system to vertical shear. The WSL and UCL were consequently formed by coupling of multiple equatorial waves with differing phases, particularly of the previously identified equatorial mode and subsurface mode tropical instability waves (with central period of 17 and 20 days, respectively, in this study), and subsurface-intensified waves with central periods of 6, 5, and 12 days and velocity maxima at 45-, 87-, and 40-m depths, respectively. In addition, a wave-like feature with periods of 50–90 days enhanced the shear throughout the entire UCL. WSLs and UCLs seem to emerge without a preference for particular tropical instability wave phases. The generation mechanisms of the equatorial waves and their joint impacts on thermocline mixing remain to be elucidated. 
    more » « less